
A comprehensive
monthly guide

for users of
FoxBASE+
__________________$10.00 per issue

TM

I&
$I

r

1

DIMENSION, SCATTER, AND GATHER COMMANDS
By J. J. Colbert

oxBASE+ HAS THREE com-
mands which are not found
in dBASE III+ and which
dBASE IV has only partially
emulated. DIMENSION al-

lows the programmer to create one- or
two-dimensional arrays efficiently,
while SCATTER and GATHER allow
for efficient transfer of data between
arrays and database records. SCAT-
TER moves data from recordfs) to an
array, while GATHER moves data in
the opposite direction. Together, these
three commands allow one to write
concise, generic (universally appli-
cable) code for moving data in and out
of records.

With the development of large
databases and their use by many indi-
viduals, and data entry and edits being
carried out by several people over a
number of years, problems such as
erroneous entries, multiple records,
and related errors can easily arise and
are difficult to locate. One such prob-

“counted” in the samples; in others,
trees died and no further data were to
be collected on them. In any event,
there should be only one record for
any [LOCATION, PLOT, TREE] triple
found in the database. How does one
find suspected duplicate records and
what does one do with them once
found? It is not efficient to traverse the
full database using the edit or browse
facility in an attempt to find and repair
all such problems. Shouldn’t we let a
program do most of that work for us?

The scientists involved in the study
requested that I devise a program that
would directly handle simple dupli-
cates and flag more complex prob-
lems for more detailed review. The
SCATTER, GATHER, and DIMENSION
commands allow one to write the code
in such a way that only the name of the
database, the index file, and the number
of fields used in indexing are required
inputs. All other information related to
the problem, such as field names, field

(continues on page 3)

lem, that of multiple records describ-
ing identical data, can be corrected
quickly and efficiently using the DI-
MENSION, SCATTER, and GATHER
commands.

As an example, the following
program was tested on a database that
contained several thousand records,
with data entered at various times over
the past four years. These data were
from an application in forestry, for
which a number of locations were
visited annually. At each location, a
series of plots were established, trees
within plots were tagged, and yearly
measurements were taken on each
tree.

Thus, each record in the database
was to store the data from a single tree.
LOCATION, PLOT, and TREE vari-
ables make up the unique key to
associate individual records with ac-
tual physical entities on the ground.
In some cases, trees entered the study
as they matured enough to be

— INSIDE —

Editorial...2

Bit Testing .. 5

Subscriber Forum.................................... 6

Three Screen Procedures8

The Magic of Publicity (Part 2)................... 11

Deduping ... 13

Recap of the Developers Conference......... 18

Faster Search Program........................... 20

PINNACLE PUBLISHING, INC.

T w U A i d l rX
A comprehensive

monthly guide
for users of
FoxBASE*'

EDITORIAL

We’ve seen the future, and it works! FoxPro is its name.
Officially introduced at the Fox Developers Conference in
Toledo (recapped by yours truly this month), FoxPro
should be reaching dealer shelves right around the time
you’re reading this. To say you’ll be impressed may qualify
as the understatement of the eon.

Of course, foxtalk will be providing you with lots of
FoxPro code as our increasing roster of top developers and
programmers begins to plumb the depths of this rich
programming environment. Tom Rettig said at the Devel-
opers Conference that it may take two years for everyone
to really investigate FoxPro’s possibilities. I don’t know if
it will take that long, but we’re getting started here in
foxtalk already. Pat Adams uses FoxPro’s powerful new
SCATTER MEMVAR BLANK and GATHER MEMVAR syntax
to greatly shorten the code in her examination of the always
challenging topic of duplicate records. Pat advocates and
illustrates techniques for avoiding entry of duplicate rec-
ords in the first place, which is obviously desirable.

Jim Colbert also deals with duplicate records. He too
uses SCATTER and GATHER, but within FoxBASE+. A
comparison of his code and Pat’s may be instructive. Also,
there are various programs available via shareware for
attempting to deal with identifying, and, sometimes, re-
moving duplicate records which already exist in a database;
perhaps we’ll review them at some point in the future.

New contributor Len Levy supplies three useful and
attractive screen procedures written in FoxBASE+. Len was
at the Developers Conference and was most enthusiastic
about FoxPro. His routines simulate in some respects
screen elements which are standard or easy in FoxPro, and
the lengths Len goes in FoxBASE+ to accomplish similar
objectives is a fine illustration of why FoxPro will make
such screen elements so much easier to create and use.

We welcome several other new contributors this
month. Herman Rohr provides an interesting fast search
method using multiple indexes. Chris Connelly offers a bit
testing routine which is extremely useful for working with
data collected from lab instruments. Cavan F.E. Adolphe’s
calendar routine is neat and sweet, and should be handy
as an appealing addition to many applications. John
Bauman contributes some fine code to make handling
memo fields easier in FoxBASE+ (of course, memo fields
are infinitely superior in FoxPro).

And last, but far from least, the second half of David
Irwin’s article on publicity finally sees the light of day.

I find it especially gratifying to welcome our new
contributors, foxtalk is growing very rapidly (it’s by far the
largest of Pinnacle’s technical publications), and adding
new authors to our regulars is an important component of
providing you with high quality code and ideas you can
use. As we say from time to time, we very much welcome

(continues on page 22)

faxtalk
foxtalk GSSN#1042-6302) is published monthly (12
times per year) by Pinnacle Publishing, Inc., 28621
Pacific Highway South, Federal Way, WA 98003. Cost
of domestic subscriptions: 12 issues, $99.00; 24 issues,
$180.00. Outside USA: 12 issues, $119.00; 24 issues,
$210.00. Single copy price: $10.00; outside USA, $12.00.
Individual source code disks: $10.00; 12 source code
disks, $60.00. All funds must be in U.S. currency. Back
issues are available upon request, for the same price as
a single copy. Second class postage pending at
Auburn, WA. POSTMASTER: Send address changes to
foxtalk PO Box 8099, Federal Way, WA 98003.

Address all editorial correspondence, requests for
special permission, or bulk orders to The Editor, foxtalk
PO Box 8099, Federal Way, WA 98003. Phone: 1 800
231-1293 or 206/941-2300.

Questions of a technical nature can be directed to Glenn
A. Hart, Editor, care of Pinnacle Publishing, Inc., PO
Box 8099, Federal Way, WA 98003.

FoxBASE+ and FoxPro are trademarks of Fox Software.
Other brand and product names are registered
trademarks or trademarks of their respective holders.

Copyright © 1989 Pinnacle Publishing, Inc. All Rights
Reserved. No part of this periodical may be used or
reproduced in any fashion whatsoever (except in the
case of brief quotations embodied in critical articles and
reviews) without the prior written consent of Pinnacle
Publishing, Inc.

Publisher, David M. Johnson
Editor, Glenn A. Hart
Managing Editor, Brent P. Smith
Layout and Design, Brett Borders
Editorial Assistant, Curt Malloy

This publication is intended as a general guide. It covers a
highly technical and complex subject and should not be used
for making decisions concerning specific products or
applications. This publication is sold as is, without warranty
of any kind, either express or implied, respecting the contents
of this publication, including but not limited to implied
warranties for the publication, quality, performance,
merchantability, or fitness for any particular purpose.
Pinnacle Publishing, Inc. shall not be liable to the purchaser
or any other person or entity with respect to any liability, loss
or damage caused or alleged to be caused directly or indirectly
by this publication.

Volume I, Issue 8

Page 2 October 1989

COMMANDS CONT. _____________________________

types, and database contents, are external to this program.
We decided to compare records pairwise; that is, to

deal with records in pairs and make decisions relative to
those pairs even though there may be more than two
records with duplicate index triples. Next, if two records
were exact duplicates, it was decided to forego further
review and remove one of the pair.

If there were differences between two records in fields
other than those used in the matching process, but one of
these records merely contained the default data for that
field, it was decided that the nondefault data would be
retained in a composite record and a copy of the initial
contents of the pair of records would be saved in an
auxiliary database. Then, the initial contents could be
compared with the composite record.

In the final case, where nondefault data are located in
the same field on different records, no change was made
to the original database, but those records were flagged by
copying them to the auxiliary database for later review and
editing outside of the program.

The main program opens the auxiliary databases, sets
up the temporary memory arrays and variables, and does
the search for matches on the primary database.

create temp from template.001
append blank
scatter to Default
delete file temp.dbf
delete file template.001

* Begin the review of the database —>

select a
goto top

* NOTE: This program assumes that the fields used in the
* indexing of records are the first fields in each
* record.

Do while .not. eof()
scatter to Frst_Rec
skip
scatter to Sec_Rec
match - .T.
Cntr - Indx_Cnt

* Since the third of the indexing fields changes the most
* rapidly in this case, we check it first.

Do while (Cntr >- 1) .and. match
If Frst_Rec(Cntr) <> Sec_Rec(Cntr)

match — .F.
endif

cntr - cntr - 1
enddo

If match
do rebuild
endif

enddo

pack
close databases
return

The Dup_recs database stores a copy of all pairs that
are found to have nonduplicate data. New_recs contains
a new record if one is composed from those in Dup_recs,
or a copy of the Defaults where no composite record can
be constructed. Use of default-filled records assures that
composites can be accurately associated with the source
data. There will be two records in Dup_recs for each record
in New_recs.

Once a pair of records with duplicate indexes is found,
the subprogram REBUILD is called. REBUILD.PRG reviews
all of the remaining fields in a pair of records, decides what
action is needed as a result of tests performed, and carries
out copying of data and setting delete flag on those records
to be removed.

******** DEL_RECS.PRG ********

This program deleted records with duplicate
index fields if the other data are duplicate or
default; it retains essential data from records
to be removed.

Private cntr,match,Fld_Cnt,Indx_Cnt

* Set up data bases for copies of the altered records,

select a

* » The following line should contain the database and
* associated index(es) that will need review and
* possible modification. «

use DATABASE index IDX_FLDS

copy structure extended to template.001
select b
create Dup_recs from template.001
select c
create Newrecs from template.001

* Set database record size (number of fields) to memory
* variable.

Fld_Cnt - FcountO

* Create the memory arrays for use in test logic and
* data transfers.

Dimension Default(Fld_Cnt), Frst_Rec(Fld_Cnt);
,Sec_Rec(Fld_Cnt), Fnl_Rec(Fld_Cnt)

* Set index field count
* (number of fields in a record used in the index).

Indx_Cnt - 3

* Load Default array with the default value for each field,

select d

********* **********REBUILD.PRG

* This program is used to decide what data should be kept *
* from two records with duplicate entries in the fields *
* used to index records. It copies the two -records in *
* question to another database, transfers any nondefault *
* data in either record to an output record in the original*
* database, and copies the newly constructed record to a *
* second auxiliary database. *

Private counter,required,differnt

* Copy the needed data from the first of the two records.

skip -1
scatter to Fnl_rec

(continues)

October 1989 Page 3

tax. Thus, aside from adding substantially to the amount
of initial code, the programmer would be required to add
to or repeatedly modify the code with each new database
to be examined.

This program uses only the name of the database,
index file, and the number of entries in the database that
compose the index. Thus, this routine could be written as
a three-parameter procedure. Note that one also might
generalize the procedure using the FCOUNT() and FIELD
() functions so that index fields are not required to be at
the beginning of each record.

But the real power of the DIMENSION command can
be fully realized with the complimentary use of the
SCATTER and GATHER commands as demonstrated. I
have used this code together with a menu-driven data entry
system and report facility to allow biological field techni-
cians with little knowledge of computers and database
systems to enter, edit, and correct database files. We have
found that this is an economical use of personnel and
minimizes the need for review and intervention by pro-
grammers or other scientists.

About the Author:

skip 1

* Set flag for non-duplicate records-"different" indicates
* need to rebuild, "required" indicates the need to retain
* both records for additional review by humanware.

required — .F.
differnt - .F.

* Test for non-duplicate data: this process assumes that
* if the data in a field differ between two records and
* one is the default then the data from the other record
* is to be saved. If neither is the default, both are
* saved and copied; and in this case a blank record is
* appended to New_Recs database to maintain record spacing.

counter — Indx_Cnt + 1

Do while counter <— Fld_Cnt
If Frst_Rec(counter) ♦ Sec_Rec(counter)

differnt - .T.
If Default(counter) - Frst_Rec(counter)

Fnl_Rec(counter) - Sec_Rec(counter)
Else

If Default(counter) # Sec_Rec(counter)
required - .T.
endif

endif
endif

counter - counter + 1
enddo

If .not. differnt
skip -1
delete
skip 1

Else

* Copy records to Dup_recs database.
select b
append blank
gather from Frst_Rec
append blank
gather from Sec_Rec
select c
If required

append blank
gather from Default
select a

Else
append blank
gather from Fnl_Rec
select a
skip -1
delete
skip
gather from Fnl_Rec
endif

endif

return

Jim Colbert is a research mathematician with the USDA
Forest Service's Northeastern Forest Experiment Station at
Morgantown, WV. He became interested in writing
FoxBASE+ software as a result of volunteer work with local
youth soccerprograms. He received a Ph.D. in mathemat-
ics from Washington StateUniversity in 1975 and currently
is working on the development of computersoftware related
to forest pest problems. EOF

SOURCE CODE DISK SUBSCRIPTION
PROGRAM SAVES TlME AND MONEY

Attention foxtalk subscribers: As you can see, foxtalk is
filled with very valuable and useful source code. If you
would like to receive a source code disk each month with
your publication, please seriously consider the following
offer.

Pinnacle Publishing regularly offers a source code disk
subscription program. For just $5.00 per month*, subscrib-
ers to this service automatically receive a disk each month
containing all of the source code found in that month’s
issue of foxtalk. This program is designed to save subscrib-
ers hours of laborious rekeying of published source code.

Call us at 1 800 231-1293 or 206/941-2300; or write
to us at Pinnacle Publishing, Inc., PO Box 8099,
Federal Way, WA 98003

• Based on one-year source code subcription for $60.00.
Individual disks are $10.00 each.

With minimal modification, this program might be
used under different circumstances. For example, I have
made no attempt to consider case in character fields or
values in numeric fields in the logic for deciding what to do
with duplicate records once detected. One may also want
to consider more complex decision logic to deal with situ-
ations where there are more than two records with the
same index values. DIMENSION, SCATTER, and GATHER
are the essential ingredients to the efficiency of this code.

Without the SCATTER and GATHER commands, one
would be required to reference fields by name and use the
REPLACE <field name> WITH < memory variables., syn-

Page 4 October 1989

BlT TESTING Although bit testing may be more common in process
control situations, any number of FoxBASE+ applications
utilize information downloaded from mainframes. Some
old mainframe systems (where disk storage used to be very
dear) used bits instead of bytes for flags in employee files.
Indications of such things as sex (e.g., bit3 on = male),
security clearances, and distribution lists were common in
data files. The ability to examine these indicators can save
many requests for reformatting from a data processing de-
partment.

By Chris Connelly, CCP

Although FoxBASE+ and other dbase dialects provide a
number of data types that can be manipulated via standard
commands or functions, the BIT (Binary InTeger) is not
included in this group. The program BITTEST.PRG dem-
onstrates a simple technique that can be used for determin-
ing the bit settings of a character and, through multiple
calls, a string of characters.

Today, FoxBASE, dBASE, and Clipper are being used
to record testing information from a variety of peripherals.
Such instrumentation as oscilloscopes, data loggers, and
digital volt ohmmeters are being attached to personal com-
puters via standard communication ports with dbase lan-
guage interfaces provided by software products from
vendors such as Pinnacle Publishing and SilverWare.

Many of these peripherals will return a status byte or
bytes that indicate the current operating conditions. These
status bytes usually indicate the presence or absence of a
condition by a bit being on or off (0 or 1). For example,
a digital volt ohmmeter could indicate that it is measuring
volts in the .001 volt range by sending a status byte of “0.”
The binary representation of the value of the ASCII
character “0” is 00110000. Consider the following chart:

BIT Meaning

BITTEST.PRG Determines whether a bit is on (.T.rue)
Input mybyte a single character
output bitO thru bit7 (bit 7 most significant
logically true if bit is on

****GET A CHARACTER FROM KEYBOARD TO DEMONSTRATE PROCESS*********

set device to screen
clear
set talk off
store ' • to mybyte
0 12,20 say ’Enter character: ' get mybyte
read

*********HEART OF THE PROCESS STARTS HERE**********

store .F. to bit0,bitl,bit2,bit3,bit4,bit5,bit6,bit7
store 0 to mynum
store 128 to mypower
store 7 to mym
store • ' to mymacro
store asc(mybyte) to mynum
do while mym > -1

store str(mym,1,0) to mymacro
if mynum > mypower .or. mynum - mypower

store .T. to bitimymacro
store mym - 1 to mym
store mynum - mypower to mynum
store mypower / 2 to mypower

else
store mym - 1 to mym
store mypower / 2 to mypower

endif
enddo

0 Meter in LOCAL mode
1 Readings scaled by 1
2 Readings scaled by 10
3 Readings scaled by 100
4 Readings scaled by 1000
5 Ohms
6 Volts
7 Amperes **t**********PROCESS ENDS HERE********************

The bits in this chart are numbered least significant (right
most) to most significant. Bits labeled in this fashion
correspond to the power of two represented, but not all
manufacturers choose this representation and may indicate
bit zero being the most significant bit.

In the program BITTEST, logical operators are estab-
lished for each bit using this representation. A program
could then use the information to send a message to the
screen, or to perform another task:

IF BIT0
@ 20,10 SAY "VOM IN LOCAL MODE"
WAIT

ELSE
0 20,10 SAY "VOM UNDER COMPUTER CONTROL"

ENDIF

FoxBASE+ provides arrays to store like data types.
Usage of an array of logical operators would be more
machine efficient than the macro substitution (BIT&), and
might be necessary for an instrumentation system. The
code could be easily changed to accommodate this feature.

****o*********DISPLA Y RESULTS FOR DEMONSTRATION PURPOSES********

.2 bit7
? bit6
? bit5
? bit4
? bit3
? bit2
? bitl
? bitO

* End of Program

About the Author:

Chris Connelly, BA, CCP, is currently Vice President
and senior aerospace consultant with Doorway to Memory,
a custom software house in Pasadena, California. He has
participated in the development of a wide variety of systems
over the past two decades rangingfrom board level embed-
ded software to super computing. A member of the Society
of Manufacturing Engineers for over 10 years, his com-
ments and writings have appeared in such publications as
Datamation, InfoSystems , and Mini Micro Systems .

October 1989 Page 5

• d ’ I • K

SUBSCRIBER FORUM notice - "copyright (c) 1989 John M. Bauman; all rights reserved"

SET PROCEDURE TO MEMODEMO

Reader John Bauman sends the following program,
which makes editing memo fields with FoxBASE+ 2.10
easier. The code is pretty much self-documenting. The
structure for the sample database used is:

USE TESTMEMO && .dbf containing memofield named memfield

IF RECCOUNT() - 0
APPEND BLANK

ENDIF

&& be sure we have a record to work with

SCATTER TO MEM && sample non-memo fieldsField Field Name Type Width
1 CHAR Character 10
2 NUM Numeric 5
3 LOG Logical 1
4 MEMFIELD Memo 10

Dec

0 3,20 SAY "MEMODEMO.PRG: Demo of memo field editing"

e 10,10 SAY "Enter character data: " GET MEM(l)

0 12,10 SAY "Enter numeric data: " GET MEM(2)

0 14,10 SAY "Enter logical data: " GET MEM(3)

0 23,10 SAY NOTICE

** Total ** 27

* memodemo.prg test memo field editing
*

* problem: Foxbase Plus 2.1 doesn't allow for easy use
* of the memo field editor from within a program.
*

* logic: This module is a sample editing session of
* testmemo.dbf which contains 4 fields, the 4th
* of which is a memofield, memfield.
*

* After editing other variables, the user is
* prompted as to whether or not memo field
* editing is desired.
*

* If desired, memedit.fmt is created using the
* SET ALTERNATE commands, and then set as the
* format file.
*
* memedit.fmt:
* 0 10, 10 say MSG
* set color to ,b/b
* 0 15,15 GET MEMFIELD VALID MEMRET(.T.)
* set color to ,n/w

* The initial "set color" statement sets the
* foreground - background so that the "memo"
* block of the memo field is NOT displayed.
* The second "set color" statement sets
* things back the way they were.
*

* The variable msg is initially defined as "",
* the null string, as we want the user to get
* straight into the memo edit session.
* Subsequently, however, msg is changed by the
* udf memret:

READ
GATHER FROM MEM

* prompt for editing of the memo field:

YN - "Y"
0 16,10 SAY "Enter memo field data now, Y/N?" GET YN ;

PICT "J" VALID YN $ "YN "
READ

IF YN - "Y"

IF .NOT. FILE("MEMEDIT.FMT")
* build a temporary .fmt file:

SET CONSOLE OFF
SET ALTERNATE TO MEMEDIT.FMT
SET ALTERNATE ON

? "0 10, 10 say MSG"
? "set color to ,b/b"
? "0 15,15 GET MEMFIELD VALID MEMRET(.T.)"
? "set color to ,n/w"

SET ALTERNATE OFF
SET ALTERNATE TO
SET CONSOLE ON

ENDIF .not. file("memedit.fmt")

* stuff keyboard with Cctrl pgdn> to auto enter memo editing:

KEYBOARD CHR(30)

PARA RET
MSG - "Press: <Ctrl Pgdn> to resume " + ;

"editing or <ESC> to quit"
RETURN RET

MSG - "" && initially no message to display
SAVE SCREEN && optional save of previous screen

SET FORMAT TO MEMEDIT
READ
SET FORMAT TO

RESTORE SCREEN && optional screen restore

WAIT && just a pause to show restored screen

ENDIF yn - "y"

CLEAR
SET PROCEDURE TO
* kill fmt file or comment this out and leave it
! DEL MEMEDIT.FMT > NUL
CLEAR ALL
RETURN
* eof() memodemo.prg

PROCEDURE MEMRET

* UDF MEMRET()

* memret.prg is a "dummy" udf in a valid clause for memo field
* editing from a .fmt file. The only purpose of this
* valid clause is to change the value of the variable
* msg from null ('•") to the message below, DURING A
* READ, so that it may be displayed after editing the
* memo field

The dummy variable ret is just used to fulfill
syntax requirements of FoxBASE+ udf's.

Now, when the editing session is through, the
user is returned to the format file screen with
the read still active, but the prompt, msg, has
been changed so that users now know they have
the option to resume editing or quit. Actually,
any of the READKEY() keys will exit the
editing, except the Ctrl pgdn set.

* set up working environment:

SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET

STEP
TALK
HELP
STAT
SCOR °

°
°

°
°

U
j

hj

hj

hj

hj

SAFETY OFF
BELL
DELI
HEAD
ECHO °

° °

DEBUG OFF
TITLE OFF

(continues)SET COLOR TO W+/B,N/W,B

October 1989Page 6

CURSE-SYS(2002,1) && CURSOR ON

SET COLOR TO 4CATTRIB && RESTORE ENTERING COLOR

R E S T O R E S C R E E N FROM CSAVE

RETURN

* CALDRIVE

PARA RET
MSG - "Press: <Ctrl Pgdn> to resume editing or <ESC> to quit"
RETURN RET && .T.
* eof() memret.prg/udf
* eop() memodemo.prg

foxtalk foxtalk foxtalk foxtalk foxtalk foxtalk foxtalk
foxtalk foxtalk foxtalk foxtalk foxtalk foxtalk foxtalk

Cavan F.E. Adolphe sends a nifty little calendar routine
that can be used in a wide variety of applications:

Here’s a short, fast program to write a calendar on screen
at coordinates you specify. The calendar is erased by
hitting any key, and the underlying screen is restored.

Usage is “DO CALDRIVE WITH <date expr>,n,m”. The
first parameter is a date expression, and this date deter-
mines the month and year of the calender. One common
call would use the character to date function, for example,
CTOD(“09/01/89”). The passed date is set blinking in the
calendar. The second and third parameters are the screen
coordinates at which you would like the calendar display
to begin. The colors can easily be customized by experi-
menting with the color references in the program. A
subroutine names CALENDAR; a UDF named EOM is also
used.

Just the job for a “HOTKEY” invocation!

* PROGRAM: CALENDAR - SUBROUTINE OF CALDRIVE

* PURPOSE: WRITES OUT 1 MONTH FOR PASSED DATE, ON SCREEN

* AT PASSED ROW, COLUMN

PARAMETER DT,SROW,SCOL && PASSED DATE, POSITION OF CALENDER

STORE DAY(EOM(DT)) TO ENDDAY

STORE SCOL+DOW(DT-DAY(DT)+1)*3-3 TO CURCOL,STCOL && START COLUMN

STORE SROW+2 TO CURROW,STROW && START ROW

g SROW,SCOL-2 CLEAR TO SROW+7,SCOL+21

g SROW,SCOL SAY UPPER(CMONTH(DT))

g SROW,SCOL+16 SAY STR(YEAR(DT),4)

g SROW+1,SCOL SAY 'SU MO TU WE TH FR SA'

NDAY-1

DO WHILE NDAY<—ENDDAY

DO WHILE CURCOL<—SCOL+19.AND.NDAY<—ENDDAY

g CURROW,CURCOL SAY STR(NDAY,2) && WRITE OUT DAY NUMBERS

CURCOL—CURCOL+3

NDAY—NDAY+1

ENDDO

CURROW—CURROW+1

CURCOL—SCOL && RESET TO FIRST COLUMN OF CALENDER

ENDDO
* PROGRAM: CALDRIVE - WRITES A CALENDAR ON SCREEN

* USEAGE: "DO CALDRIVE WITH <date expression n,m"

* (n,m - positive integers, earliest valid date is 12/01/1582)
IF MONTH(DT)-MONTH(DTSAVE)

DOWMS-DOW(DT)

BLDAY-DAY(DTSAVE)

COLCAL-MOD(BLDAY+DOWMS-2,7)+1

ROWCAL-(BLDAY+DOWMS-2)/7

SET COLOR TO *W+/R

g STROW+ROWCAL,SCOL+COLCAL*3-3 SAY STR(BLDAY,2

* WRITE OUT DAY NUMBER

SET COLOR TO W+/R

ENDIF

* AUTHOR: CAVAN F.E. ADOLPHE
*

* PROGRAMMER: Cavan Adolphe

* ADDRESS: 3895 LAKE GARDEN DRIVE, FALLBROOK, CA 92028

* PHONE: (619) 723 1764 (w)

* CALL WITH:

* PARAM1-DATE EXPRESSION

* PARAM2-CALENDER TOP LINE (0->15)

* PARAM3-CALENDER LEFT COLUMN (0->6)
*

PARAMETER DT,RW,COL

DT—IIF(DT<CTOD('12/01/1582'),CTOD('12/01/1582'),DT)

DTSAVE-DT && KEEP PASSED DATE FOR BLINKING REFERENCE

RW-IIF(RW>15,15,RW) && CHECK ON ROW BOUNDS

COL—IIF(COL>6,6,COL) && CHECK ON COLUMN BOUNDS

SAVE SCREEN TO CSAVE

CURSE—SYS(2002) && CURSOR OFF

DT—DT-DAY(DT)+1 && GET 1ST OF PASSED MONTH

CATTRIB-SYS(2001,'COLOR') && SAVE CURRENT COLOR

SET COLOR TO W+/N+

0 RW,COL CLEAR TO RW+9,COL+73

0 RW,COL TO RW+9,COL+73 DOUBLE

DO CALENDAR WITH DT-1,RW+1,COL+3 && PREVIOUS MONTH

SET COLOR TO W+/R

DO CALENDAR WITH DT,RW+1,COL+27 && PASSED MONTH

SET COLOR TO W+/N+

DO CALENDAR WITH DT+31,RW+1,COL+51 && NEXT MONTH

WAIT ''

RETURN

foxtalk foxtalk foxtalk foxtalk foxtalk foxtalk foxtalk

* GETS END-OF-MONTH DATE OF PASSED DATE [UDF]

* LAST UPDATE 1/3/89

PARAMETER PDATE && PASSED DATE

CMONTH-MONTH(PDATE)

PDATE-1IF(DAY(PDATE)<-28,PDATE+28-DAY(PDATE),PDATE)

* 28TH OF MONTH OR GREATER

DO WHILE MONTH(PDATE)-CMONTH

* INCREMENT DATE WHILE SAME MONTH

PDATE—PDATE+1

ENDDO

RETURN PDATE-1 && END-OF-MONTH

October 1989 Page 7

THREE SCREEN PROCEDURES *** Syntax Example:

*** DO title WITH "ADD TO INVENTORY FILE"

By Len Levy

As programmers, we have developed, and are continuing
to develop, our own individual creative styles. We ‘borrow’
code from many sources, such as our superb monthly issue
of foxtalk, and spend endless hours copying code, analyz-
ing results, rewriting, and rewriting again. All the while, our
repertoire of programming techniques continues to grow
and our creative skills increase; much the same as a
musician, artist or sculptor. We programmers are creative
artists, and the flexible medium in which we work is
FoxBASE+ and the even richer, more exciting, and eagerly
awaited FoxPro.

This delicate balance, form, and symmetry, is attained
through the judicious use of contrast and repetition. The
programs that we develop are subject to the same rules.
Our clients judge our work, not only on the basis of “Does
it do what it’s supposed to do,” but also, “is it appealing to
work with?” Balance, symmetry, contrast, and repetition
are integral factors in our finished product. What better way
to gain consistency in the programs we develop than
through use of procedures and functions?

We see fewer “plain vanilla,” black and white, clinical-
looking screens. The appealing and colorful (when avail-

able) input and display screens seen in a running applica-
tion are certainly more “user-friendly,” and considerably
less inhibitive to data entry people. Why not concentrate to
a greater degree on the output?

I use the following three procedures in most of the
applications I write.

Title

PRIVATE l,msg,old_col
1 - (80-LEN(msg))/2
* capture original screen colors
STORE SYS(2001,"COLOR") TO old_col
SET COLOR TO gr+/b && set your own colors here
CLEAR
@ 0,0 TO 24,79 double
@ 0,1-2 SAY "►"+REPLICATE(" ",LEN(msg))+"«"
SET COLOR TO w+/b
@ 0,1 SAY msg
SET COLOR TO &old_col && restore original colors
RETURN

Frame

‘FRAME’ is the first of two procedures that automate the
display of a centered, framed, and shadowed box contain-
ing your message of up to 264 characters.

An error trap is built in, to warn you of starting too low
on the screen and exceeding the 254 character limit.

The shadow produced is narrow and appears in
opaque black, unless the background upon which the
frame appears is black. In that case, the shadow appears
grey.

In FoxPro, this procedure will be rewritten to allow to
for a 1024 character message and a transparent shadow!

‘FRAME’ is called with six parameters:

1. The starting row position, which could be designated
by a numeric value of your choice, 1 to 23, or the
relative position, ‘ROW()’.

2. The message to be displayed can be passed directly
as in ‘DO frame WITH 12, “Hit Any Key”,...’, or you
you can store the message in a variable and pass the
variable to the procedure, as in:

•STORE "Hit Any Key" TO msg'
•DO frame WITH 12,msg,.............. '

Use ‘STORE REPLICATE(“$”,250) TO msg’ to try it out.

3. The color of box frame, typed in quotes, as in

•DO frame WITH 10, "Hit Any Key","r/bg",........... •

My personal preference for my title screens are
Yellow text on blue background, (gr+/b) and the cyan
frames are attractive.

4. The color of text to be displayed in the frame, as in:
•DO frame WITH 10, "Hit Any Key","r/bg","w+/bg",...’

This produces a bright white text on cyan back-
ground.

5. The color of ‘Y’ or ‘N’ prompt which appears on the
line below the last line of the message only if the 6th

(continues)

‘TITLE’ is simple and short. When you run ‘DO title WITH
”<whatever>",’ the screen is cleared and a frame appears
around the screen edges with your <whatever> centered
on the top line between - and [Alt-16] or ‘CHR(16)’ and
[Alt-17] or ‘CHR(17)’.

Rather than clearing the screen, I find it more effective
to do a partial clearing and keep the title and borders intact
while in the same procedure, as in:

@1,1 CLEAR TO 23,78

If you use this partial screen clear, make certain your
color parameters are the same as when you initially called
the ‘TITLE’ procedure!

Simple, but effective and consistent.

TITLE

PARAMETERS msg
* Len Levy, Data Management Systems
*** Creates double frame in window with centered message
*** MSG - Message on top line to be centered
*** between and '◄*

October 1989Page 8

parameter passed to the procedure is “.t”. Since there
mustbe a value passed, a null (” ”) will satisfy the call,
as in:

+1,AT(",",SYS (2001,"COLOR"));

-(AT ("/",SYS (2001,"COLOR"))+l))

IF ISCOLORO

sh_col-"n/"+old_back 44 Shadow color - BLACK on screen

IF UPPER (old_back)-"N" && with OTHER THAN black back-

sh_col-"W/n" 44 ground, otherwise WHITE

END IF

ELSE

•DO frame WITH 10, "Hit Any Key","r/bg","w+/bg", .

6. The final parameter is the True/False flag, “.L” or
which tells the procedure whether or not to display a
prompt line below the message: ‘Choice (Y/N)? ’

If parameter 6 is “.t.”, you must either initialize the
variable ‘yn’ with ‘PUBLIC yn’ or ‘yn=[Y]’ before the call. All
parameters with the exception of the first, must be sent
between quotes, as in:

STORE "Y" to yn DO frame WITH 5, "Quit?", "r/bg",;

"w+/bg«, "b/w", ".t."

fr_color-"n/w"

tx_color-"n/w+"

hi_color-"w+/n"

sh_col-"b+/n"

END IF

old_COl-SYS(2001,"COLOR") && Save PRIOR colors

SAVE SCREEN

STORE LEN (msg) TO l_msg

IF (LEN (msg)/72+1)+ROW>24

IF ISCOLORO

SET COLOR TO R/W

ELSE

SET COLOR TO N/W

END IF

g 11,12 CLEAR TO 13,67

g 11,12 TO 13,67 DOUBLE

SET COLOR TO B/W

g 12,14 SAY "Starting Row Position is TOO LOW...

+"Please Re-Select"

*** Narrow SHADOW ***

SET COLOR TO 4sh_COl

g 14,14 SAY REPLICATE(CHR (219),56)

g 13,68 SAY REPLICATE(CHR (219),2)

g 12,68 SAY REPLICATE(CHR (219),2)

? SYS (2002) 44 turn cursor OFF

XX— INKEY(2)

? SYS (2002,1) 44 turn cursor ON

RESTORE SCREEN

SET COLOR TO 4old_col

RETURN TO MASTER

END IF

IF l_msg>72

LEFT - 2 44 set left and right edges for frame

RIGHT - 77

DO CASE

CASE l_msg>-217

no_rows-4

STORE LTRIM(TRIM(LEFT(msg, 72))) TO ml

IF AT(" ",ml)>0 44 if at least one space in line

STORE 0 TO COUNT

DO WHILE COUNT <-LEN(ml)

IF SUBSTR(ml, LEN (ml)-COUNT ,1)-" "

STORE LEFT (ml, LEN (ml)-COUNT) TO ml

STORE RIGHT (msg, LEN (msg)-LEN (ml)) TO m2

EXIT

END IF

STORE COUNT +1 TO COUNT

ENDDO

STORE LTRIM(TRIM(LEFT(m2, 72))) TO m2

ELSE

STORE LTRIM(TRIM (RIGHT(msg, LEN (msg)-LEN (ml))));

TO m2

STORE LTRIM(TRIM(LEFT(m2, 72))) TO m2

END IF

IF AT(" ",m2)>0

STORE 0 TO COUNT

DO WHILE COUNT <-LEN(m2)

IF SUBSTR(m2, LEN (m2)-COUNT ,1)-" "

STORE LEFT (m2, LEN (m2)-COUNT) -TO m2

STORE RIGHT(msg, LEN (msg)-(LEN (ml)+LEN (m2)));

TO m3

EXIT

END IF

STORE COUNT +1 TO COUNT

ENDDO

STORE LTRIM(TRIM(LEFT(m3, 72))) TO m3

ELSE

STORE LTRIM(TRIM(RIGHT(msg, LEN (msg);

-(LEN (ml) +LEN (m2))))) TO m3

STORE LTRIM(TRIM(LEFT(m3, 72))) TO m3

ENDIF

IF AT(" ",m3)>0

(continues)

IF yn - "Y" ... etc.

I regularly use the ‘FRAME’ procedure with macros
either stored in a ‘MEM’ file or intitialized in their master
procedure as a public variable. As an example:

PUBLIC color,yn

STORE " " to yn

STORE "[r/bg],[w+/bg],[b/g]" TO color

DO title WITH "ADD ITEM TO INVENTORY FILE"

< your input procedure goes here >

6 1,1 CLEAR TO 23,78 44 Clear screen but leave borders

DO frame with 10, "Add Another Item?",4color,".t."

IF yn - «Y" ... etc .

PARAMETERS ROW, msg, fr_color,tx_color,hi_color,get flag

* Len Levy, Data Management Systems

*** ROW - Row on which message is to appear

*** MSG - Any message to be centered and framed up to 254

*** characters

*** FR_COLOR - Color of frame,

*** in QUOTES (Ex.: "r/bg")

*** TX_COLOR - Color to text to be displayed,

*** in QUOTES

*** HI_COLOR - Color of "Y" or "N" prompt

*** if getflag - «.T."

*** otherwise pass NULL to routine (Ex.: "")

*** GETFLAG — Indicator of whether 'Y' or 'N'

*** prompt is to appear

*** Syntax Example:

*** DO frame WITH 12, "Do You Wish To Quit?","r/bg",;

*** "w+/bg","b/w",".t."

*** Will display centered and framed query on line 12

*** plus 'Choice (Y/N)? ' on line 13

*** IMPORTANT!! Initialize variable ’YN’ to " " before

*** calling routine or declare PUBLIC yn

DO frame WITH row(),"Hit Any Key to Continue",;

"g+/n","b+/n","", ".f."

Will display center and framed message on the

current line for 2 seconds before restoring

original screen

PRIVATE ROW, msg, fr_color,tx_color,hi_color,getflag

PRIVATE I_msg,no_rows,xx,ml,m2,m3,m4,start

* Get source screen background color for generating 'shadow'

* effect:

old_back-SUBSTR(SYS (2001,"color"),AT("/",SYS(2001,"color"));

October 1989 Page 9

DO WHILE COUNT <-LEN(m2)

IF SUBSTR(m2, LEN (m2)-COUNT ,1)-" "

STORE LEFT (m2, LEN (m2) -COUNT) TO m2

STORE RIGHT (msg, LEN (msg)-(LEN (ml)+LEN (m2)));

TO m3

EXIT

ENDIF

STORE COUNT +1 TO COUNT

ENDDO

STORE LTRIM (TRIM(m3)) TO m3

IF LEN (m3) >72 44 Gotta add a 4th line!

STORE LEFT (m3, 72) TO m3

STORE 0 TO COUNT

DO WHILE COUNT <-LEN(m3)

IF SUBSTR(m3, LEN (m3)-COUNT ,1)-" "

STORE LEFT (m3, LEN (m3) -COUNT) TO m3

STORE RIGHT (msg, LEN (msg)-(LEN(ml)+LEN (m2);

+LEN(m3))) TO m4

EXIT

ENDIF

STORE COUNT +1 TO COUNT

ENDDO

STORE LTRIM(TRIM (m4)) TO m4

STORE endline+1 TO endline

ENDIF

ELSE

STORE LTRIM(TRIM(RIGHT(msg, LEN (msg);

-(LEN (ml) +LEN (m2))))) TO m3

STORE LTRIM(TRIM(LEFT(m3, 72))) TO m3

ENDIF

SET COLOR TO 4fr_color

IF .NOT. 4getflag 44 No GET

0 ROW-1,LEFT CLEAR TO ROW+endline,RIGHT

0 ROW-1,LEFT TO ROW+endline,RIGHT DOUBLE

*** SHADOW ***

IF endline-3

SET COLOR TO 4sh_COl

0 ROW+4,LEFT+1 SAY REPLICATE(CHR (223),76)

0 ROW+3,RIGHT+1 SAY CHR (219)

0 ROW+2,RIGHT+1 SAY CHR (219)

0 ROW+1,RIGHT+1 SAY CHR (219)

0 ROW, RIGHT+1 SAY CHR (219)

0 ROW-1,RIGHT+1 SAY CHR (220)

ELSE

*** SHADOW ***

SET COLOR TO 4sh_col

0 ROW+5,LEFT+1 SAY REPLICATE(CHR (223),76)

0 ROW+4,RIGHT+1 SAY CHR(219)

0 ROW+3,RIGHT+1 SAY CHR (219)

0 ROW+2,RIGHT+1 SAY CHR (219)

0 ROW+1,RIGHT+1 SAY CHR (219)

0 ROW, RIGHT+1 SAY CHR (219)

0 ROW-1,RIGHT+1 SAY CHR (220)

ENDIF

ELSE

IF endline - 3

0 ROW-1,LEFT CLEAR TO ROW+endline+1,RIGHT

0 ROW-1,LEFT TO ROW+endline+1,RIGHT DOUBLE

SET COLOR TO 4sh_col

0 ROW+5,LEFT+1 SAY REPLICATE(CHR (223), 76)

0 ROW+4,RIGHT+1 SAY CHR (219)

0 ROW+3,RIGHT+1 SAY CHR (219)

0 ROW+2,RIGHT+1 SAY CHR (219)

0 ROW+1,RIGHT+1 SAY CHR (219)

0 ROW, RIGHT+1 SAY CHR (219)

0 ROW-1,RIGHT+1 SAY CHR (220)

ELSE

0 ROW-1,LEFT CLEAR TO ROW+endline+2,RIGHT

0 ROW-1,LEFT TO ROW+endline+2,RIGHT DOUBLE

*** SHADOW ***

SET COLOR TO 4sh_col

0 ROW+6,LEFT+1 SAY REPLICATE(CHR (223),76)

0 ROW+5,RIGHT+1 SAY CHR (219)

0 ROW+4,RIGHT+1 SAY CHR (219)

0 ROW+3,RIGHT+1 SAY CHR (219)

0 ROW+2,RIGHT+1 SAY CHR (219)

0 ROW+1,RIGHT+1 SAY CHR (219)

0 ROW, RIGHT+1 SAY CHR (219)

0 ROW-1,RIGHT+1 SAY CHR (220)

ENDIF

ENDIF (continues)

STORE 0 TO COUNT

DO WHILE COUNT <-LEN(m3)

IF SUBSTR(m3, LEN (m3) -COUNT ,1)-" “

STORE LEFT (m3, LEN (m3) -COUNT) TO m3

STORE RIGHT (msg, LEN (msg);

-(LEN (ml) +LEN (m2) +LEN (m3))) TO m4

EXIT

END IF

STORE COUNT +1 TO COUNT

ENDDO

STORE LTRIM(TRIM(m4)) TO m4

ELSE

STORE LTRIM(TRIM(RIGHT(msg, LEN (msg);

-(LEN (ml)+LEN (m2)+LEN (m3))))) TO m4

STORE LTRIM(TRIM(LEFT(m4,72))) TO m4

ENDIF

SET COLOR TO 4fr_color

IF .NOT. 4getflag && No GET

0 ROW-1,LEFT CLEAR TO ROW+4,RIGHT

0 ROW-1,LEFT TO ROW+4,RIGHT DOUBLE

*** SHADOW ***

SET COLOR TO 4sh_COl

0 ROW+5,LEFT+1 SAY REPLICATE(CHR (223),76)

0 ROW+4,RIGHT+1 SAY CHR (219)

0 ROW+3,RIGHT+1 SAY CHR (219)

0 ROW+2,RIGHT+1 SAY CHR (219)

0 ROW+1,RIGHT+1 SAY CHR (219)

0 ROW, RIGHT+1 SAY CHR (219)

0 ROW-1,RIGHT+1 SAY CHR (220)

ELSE

0 ROW-1,LEFT CLEAR TO ROW+5,RIGHT

0 ROW- 1, LEFT TO ROW+5,RIGHT DOUBLE

*** SHADOW ***

SET COLOR TO 4sh_col

0 ROW+6,LEFT+1 SAY REPLICATE(CHR (223),76)

0 ROW+5,RIGHT+1 SAY CHR (219)

0 ROW+4,RIGHT+1 SAY CHR (219)

0 ROW+3,RIGHT+1 SAY CHR (219)

0 ROW+2,RIGHT+1 SAY CHR (219)

0 ROW+1,RIGHT+1 SAY CHR (219)

0 ROW, RIGHT+1 SAY CHR (219)

0 ROW-1,RIGHT+1 SAY CHR (220)

ENDIF

SET COLOR TO 4tx_color,4hi_color

0 ROW, (80-LEN(ml))/2 SAY ml

0 ROW+1,(80-LEN(m2))/2 SAY m2

0 ROW+2,(80-LEN(m3))/2 SAY m3

0 ROW+3,(80-LEN(m4))/2 SAY m4

IF 4getflag

STORE " " TO yn

0 ROW+4,31 SAY “Choice (Y/N)? “ GET yn PICTURE

VALID yn$"YN”

READ

SET COLOR TO 4old_col

RESTORE SCREEN

ELSE

xx— INKEY(2)

RETURN

ENDIF

CASE l_msg>—145 .AND .l_msg<—216

STORE 3 TO endline

no_rows-3 44 But POSSIBLY '4' after parsing!!

STORE LTRIM(TRIM(LEFT(msg, 72))) TO ml

IF AT(" ",ml)>0

STORE 0 TO COUNT

DO WHILE COUNT <-LEN(ml)

IF SUBSTR(ml, LEN (ml) -COUNT ,1)-" "

STORE LEFT (ml, LEN (ml) -COUNT) TO ml

STORE RIGHT (msg, (LEN (msg)-LEN (ml))) TO m2

EXIT

ENDIF

STORE COUNT +1 TO COUNT

ENDDO

STORE LTRIM(TRIM(LEFT(m2, 72))) TO m2

ELSE

STORE LTRIM(TRIM(RIGHT(msg, LEN (msg)-LEN (ml))));

TO m2

STORE LTRIM(TRIM(LEFT (m2, 72))) TO m2

ENDIF

IF AT(" ",m2)>0

STORE 0 TO COUNT

October 1989Page 10

THE MAGIC OF PUBLICITY — PART 2

By David Irwin
With Emile Barrios

“I don’t care what they say about me, as long as it isn’t true.”
— Katherine Hepburn

In the first part of this series, as you may recall, we set about
debunking the Black Art of publicity.

To sum up: We talked about how some clever foot-
work can generate great publicity for an essentially worth-
less product — but how the public will sooner or later catch
on — and boy will they be mad!

As Honest Abe said, you can’t fool all the people all of
the time, so resist the temptation to oversell your product
to the press. And never forget David Irwin’s First Rule of
Public Relations: Don’t start promoting your product until
you have a product to promote. Hyping “vaporware” to the
press is the express route to bankruptcy court.

Good publicity looks natural; it appears as if the press
just happened to stumble upon your product and, after
being suitably impressed, is writing about it in glowing
terms. The effort that goes into this “natural” publicity
should, at its best, be transparent. That’s why the best
single type of publicity is word of mouth — you just can’t
beat it.

And remember that those software buyers out there are
smarter than you think. They want to be convinced before
they spend their money. They’re tired of hype and hoopla.
They want to know how they’ll benefit from your technol-
ogy. That’s what you must tell them.

But how can you make all the necessary contacts with
editors, write all the press releases, keep track of all the
editorial calendars, monitor the competition, and do all the
other hard work that good public relations requires while
continuing to develop your product?

Read on, McDuff, and I’ll tell you.

The Flack Jacket

If getting the right kind of publicity sounds like a full-time
job to you, you’re right. And I don’t say that because it’s
what I do for a living.

Remember we said last time that the “Magic” of
publicity isn’t magic at all. It is searching out and exploiting
all the opportunities available to you, while putting the best
possible face on your product and your company. You
already have a job. You don’t need another one. If you’re
serious about mounting a publicity campaign, you’re going
to need some help.

Before we go any further, let’s talk a little about the
difference between “Publicity” and “Public Relations.”

(continues)

SET COLOR TO 4tx_color,4hi_color
0 ROW,(80-LEN(ml))/2 SAY ml
0 ROW+1,(80-LEN(m2))/2 SAY m2
0 ROW+2,(80-LEN(m3))/2 SAY m3
IF endline-4

0 ROW+3,(80-LEN(m4))/2 SAY m4
ENDIF
IF 4getflag

STORE " " TO yn
IF endline-3

0 ROW+3,31 SAY "Choice (Y/N)? " GET yn;
PICTURE "J" VALID yn$"YN"

READ
SET COLOR TO 4old_col
RESTORE SCREEN
RETURN

ELSE
0 ROW+4,31 SAY "Choice (Y/N)? " GET yn;

PICTURE "J" VALID yn$"YN"
READ
SET COLOR TO 4old_col
RESTORE SCREEN
RETURN

ENDIF
ELSE

XX- INKEY(2)
ENDIF

CASE l_msg>—73.AND.l_msg<—144
STORE 2 TO endline
no_rows-2 44 But POSSIBLY 3 after parsing!!
STORE LTRIM(TRIM(LEFT(msg,72))) TO ml
IF AT(" ",ml)>0

STORE 0 TO COUNT
DO WHILE COUNT C-LEN(ml)

IF SUBSTR(ml,LEN(ml)-COUNT ,1)-" "
STORE LEFT(ml,LEN(ml)-COUNT) TO ml
STORE RIGHT(msg,(LEN(msg)-LEN(ml))) TO m2
EXIT

ENDIF
STORE COUNT +1 TO COUNT

ENDDO
STORE LTRIM(TRIM(m2)) TO m2
IF LEN(m2)>72 44 Gotta add a 3rd line!

STORE 0 TO COUNT
STORE LEFT(m2,72) TO m2
DO WHILE COUNT <-LEN(m2)

IF SUBSTR(m2,LEN(m2)-COUNT ,1)-" "
STORE LEFT(m2,LEN(m2)-COUNT) TO m2
STORE RIGHT(msg,LEN(msg);

-(LEN(ml)+LEN(m2))) TO m3
EXIT

ENDIF
STORE COUNT +1 TO COUNT

ENDDO
STORE LTRIM(TRIM(m3)) TO m3
STORE endline+1 TO endline

ENDIF
ELSE

STORE LTRIM(TRIM(RIGHT(msg,LEN(msg);
-LEN(ml)))) TO m2

STORE LTRIM(TRIM(LEFT(m2,72))) TO m2
ENDIF
SET COLOR TO 4fr_color
IF .NOT. 4getflag

IF endline - 2
0 ROW-1,LEFT CLEAR TO ROW+endline,RIGHT
0 ROW-1,LEFT TO ROW+endline,RIGHT DOUBLE
*** SHADOW ***
SET COLOR TO 4sh_COl
0 ROW+3,LEFT+1 SAY REPLICATE(CHR(223),76)
0 ROW+2,RIGHT+1 SAY CHR(219)
0 ROW+1,RIGHT+1 SAY CHR(219)
0 ROW,RIGHT+1 SAY CHR(219)
0 ROW-1,RIGHT+1 SAY CHR(220)

ELSE
0 ROW-1,LEFT CLEAR TO ROW+endline+1,RIGHT
0 ROW-1,LEFT TO ROW+endline+1,RIGHT DOUBLE
*** SHADOW ***
SET COLOR TO 4sh_COl
0 ROW+4,LEFT+1 SAY REPLICATE(CHR(223),76)

(continues on page 23)

October 1989 Page 11

become a trusted source for quality information, you’ll
become a valuable commodity indeed. On the other hand,
if you burn these people with bogus information, they will
never believe you again. It’s that simple.

So when you deal with the media, do not lie to them,
either in fact or by omission. You’ll find that the media as
a whole has a cynical, skeptical attitude. This is because
it’s their job to sift the facts from the hype — and when it
comes to hype, they’ve probably heard it all.

For this reason, it’s relatively difficult for you, as a
developer, to get the attention of these people. Picture it
this way: An editor is sitting at his/her desk in a cramped
office. The desk is piled with magazines, books, and
hundreds and hundreds of discarded software diskettes.
And even more discarded Press Releases that all say “Here’s
a product that will revolutionize the industry!” He/she
opens your envelope. He/she doesn’t know you or your
product or your company. Your Press Release says “Here’s
a product that will revolutionize the industry,” because
that’s the way you feel about the technology you’ve
created.

The editor flings your Press Release against the wall
and says: “Next!”

Your best bet is to work with someone who has an
ongoing relationship with the editor or editors in question.
Someone who knows what these editors are looking for.
Someone with the magic word: CREDIBILITY.

I hate to repeat myself, but this is a PR practitioner’s
stock in trade.

Doing Your own PR

Of course, not everyone can afford to hire a professional
PR person. If you’re in a situation where you have to do
your own PR, then are a few simple rules that will help you:

• Don’t get overly extravagant in describing what your
product will do or has done.

• Keep your adjectives down to a minimum. If you’re
going to praise your product, do it in the words of
impartial users. If you’re like most developers, your
application is like your child — you can’t really be
objective in describing it. Remember, you’re striving
for CREDIBILITY.

• Don’t send one magazine’s review to another maga-
zine. If your product has already been treated by the
competition, chances are the target publication will
be much less interested.

• Don’t expect overnight results. It takes, on average,
90-120 days for the seeds of PR to blossom into print.

(continues)

Publicity is getting your name in the paper as many times
as possible. Public Relations is associating the right image
with that name.

Publicity, as the name implies, is making sure your
achievements and/or products are publicized faithfully in
the trade papers and other media. Publicity is frequently
nothing more than good reporting — reporting facts about
you and your product to the media.

Public Relations takes those facts and dramatizes them
in creative ways. Public Relations, in general, looks beyond
today’s facts and puts them into a larger context — as a part
of the ongoing story of your company’s success.

For example, let’s suppose that a controversy erupts in
the industry in which you’re involved. You’re asked to
enter the fray by commenting in the press.

If Publicity is what you’re after, you go for it. Damn the
torpedoes, full speed ahead. Just spell the name right.

From a Public Relations standpoint, however, the
situation may be quite different. As Confucius said, people
who sling mud often get dirty. This may be a good time to
shut up and let the whole thing blow over. Good PR is
knowing when to make noise, as well as knowing when to
be quiet.

That’s a good reason to enlist the aid of an experienced
PR professional — not your Uncle Murray who sells used
cars. Not your brother-in-law Raoul who sets up “L’Eggs”
displays at the supermarket. You wouldn’t want those guys
messing around with your code. They shouldn’t mess with
your image, either.

Public Relations is about mapping a path to the future.
Where do you think you’ll be with your product next year?
In five years? What kind of markets do you want to get into?
And where do you go to get publicity in those markets? You
start by deciding where you want to be, then you set about
developing a plan that will take you there.

Public Relations starts with those kinds of questions.
Publicity, on the other hand, asks simply “what’s new?” and
then attacks the media with this new-found knowledge.
That’s where publicists got the nickname “Flack”; put
enough ordnance into the air and you’re bound to hit
something — even if it is one of your own planes.

Massaging the Medium

There is a word that defines the success of any public
relations campaign. It also defines any successful Public
Relations Practitioner.

That word is CREDIBILITY.

The people who work in the various computer-related
media are hard-pressed for time and resources. They rely
heavily on outside sources for the information they need to
fill up all those pages of text between the ads. If you can

Page 12 October 1989

DEDUPING

By Pat Adams

One of my oft-told stories concerns a young colleague who
came to see me one day and excitedly showed me a routine
he had written to cull duplicate records from a database.
While it was an interesting bit of code, I had to explain to
him that good systems design stops duplicate records from
entering the system in the first place. If a system is designed
properly, there should be no need for routines that later cull
for duplicates. However, if the number of telephone calls
I receive from people looking for such routines, and the
number of such routines I see posted on BBSs are any
indication, there are lots of xbase systems out there which
do not avoid duplicate record creation up front.

While the philosophy of deduping is a simple one, it
is not always one that is easy to execute. Certainly the
easiest implementation is with systems where each record
has a unique identifier. In such instances, duplication can
be avoided by doing searches on the unique key or field
prior to an APPEND. There is another aspect to this that
often trips up inexperienced programmers — doing dupli-
cate searches if the key field is changed during an EDIT.

The following code illustrates up front deduping for a
patient database that uses the patient’s Social Security
Number as the unique identifier. Notice that the new
FoxPro SCATTER MEMVAR BLANK and GATHER MEMVAR
syntax is used to create blank memory variables; then, if no
duplicate is found, this is used to replace the data in the
newly APPENDed record. If a duplicate record is found
during the APPEND routine, the KEYBOARD command is
used to stuff a PgDn into the keyboard. A logical .T. is
returned from the VALID and the PgDn then takes the
routine out of the READ.

If the user is EDITing a record and changes the Social
Security Number to one that already exists in the database,
he/she is so advised and the Social Security Number is
returned to the original value. For both the APPEND and
EDIT sequences, all activity is performed against memory
variables, so data are not input to the database unless the
duplicate screening process is concluded satisfactorily (yet
another example of why you might want to do data entry
and editing against memvars rather than directly against the
database).

PROCEDURE Padd

*
* Add patient record to database.
* Duplicate search is performed on unique
* key of patient’s social security number.
* If duplicate record found APPEND is aborted.

• Don’t get discouraged. If you believe in your product
and its possibilities, keep plugging away at the PR
process. Remember that there are a lot of other
people out there trying to do exactly what you are
doing.

Damage Control

Finally, let’s talk briefly about a worst-case scenario.
There may come a time when the press gets hold of a

story that you’d rather not see in print. Maybe your product
has been found to be very buggy. Maybe you’re being sued
by some megacorporation. Maybe your number-one pro-
grammer has defected to Bulgaria and joined the KGB.

The press may come to you and ask if the story is true.
What do you say?

The best thing you (and/or your PR person) can do is
level with the media — even though it may be painful and
somewhat damaging at the moment. Your honesty in the
midst of crisis will be of great benefit to your relationship
with the media. Your CREDIBILITY.

On the other hand, if you deny the facts, or (even
worse) say “No Comment,” chances are the media will get
the story anyway. In that case you’ll be in big trouble,
because they will publish the story and take special care to
make you look like a schmuck (use Ashton-Tate as an
example here).

In the long run, your best interests are served by being
honest with the media, as difficult as that may be.

Note: Special thanks to Ben Irwin (who’s forgotten
more about Public Relations than Til ever know) for
his assistance in preparing these two columns.

About the Author:

David Irwin is President of Irwin Ink, a microcomputer
marketing and consulting company. David was the Tech-
nical Editor of Data Based Advisor and President and
Chief Executive Officer of Data Based Solutions, the parent
company ofData Based Advisor and a dBASE-language
software publisher. David now writes forDBMS Views (a
marketing publication covering the dBASE Community)
and IDBUGJournal .

EOF

(continues)

October 1989 Page 13

IF LEN (TRIM (xs sno)) - 0* Author: Pat Adams, DB Unlimited

*$ SS ♦ r equ i red . I f use r had not
* entered the data pop up warning.

SET TALK OFF
SET CONFIRM ON
SET DELETED OFF
SELECT 2
USE ZIP INDEX ZIP
SELECT 1
USE PATIENT INDEX SSNO

SET COLOR TO *+GR */R
8 5 ,45 ,10 ,66 BOX ,, r -riP-l,l "
SET COLOR TO W+/R
8 6 ,46 CLEAR TO 9 ,65
8 6,47 SAY "You MUST enter a"
8 7,47 SAY "Soc ia l Security
SET COLOR TO W/R
8 9,47 SAY "Pre s s any key . . . "
WAIT ""
RETURN .F.

ENDIF l en (t r im(xssno)) - 0

IF xact ion - "ADDING"

* Crea te blank memory var iab les with
* the same name as the f i e lds in the
* PATIENT. DBF f i l e

SCATTER TO MEMVAR BLANK && <-FoxPro command
SET COLOR TO W/n
CLEAR
SET COLOR TO W+/B
8 6 ,12 ,16 ,70 BOX ’’UTlII" "
8 7 ,14 SAY "SOCIAL SECURITY #"
8 9 ,31 SAY " . "
812 .14 SAY "ADDRESS:"
814 ,58 SAY " , "
SET COLOR TO W/B, N/W
810 .15 SAY "Fi rs t Name"+SPACE (11) +"Las t Name"
8 7 ,32 GET M->SSNO PICTURE [999-99 -9999] VALID;

Dupcheck (s sno , "ADDING")
8 9,14 GET M->FIRST
8 9,30 GET M->MI PICTURE [’A]
8 9 ,33 GET M->LAST
812 .23 GET M->ADDRES1
813 .23 GET M->ADDRES2
814 .23 GET M->CITY
814 ,60 GET M->STATE PICTURE [!A]
814 ,64 GET M->ZIP PICTURE [99999] VALID ;

Zipcheck (c i ty , s t a t e , z ip)
READ

* In p rocess of adding new r eco rd .
* Do simple check for duplicate SS No.

SEEK xssno

IF FOUND ()

*$ Advise u se r i f duplicate SS ♦ found

DO Dupfindl
KEYBOARD CHR(3)

ENDIF found ()

RETURN . T.
ELSE

*$ User i s edi t ing da t a . Check
* to see i f SS ♦ has been changed
* in the memvar d i f f e r s from that
* in the da tabase f i e ld . I f so ,
* search for poss ib le dupl ica te .
* EDIT routine has a l ready s tored the
* patient RECNOO to a memvar a t the
* cal l ing l eve l . Memvar name i s kurrent .

IF READKEY () - 12 .OR. READKEY () - 268

* Return to main menu i f ESC p re s sed during READ

IF M->ssno ♦ pa t ien t ->ssno
SEEK xssno

IF FOUND ()
DO Dupcheck2
GO kurrent

RETURN TO MASTER
ENDIF readkey () - 12, e t c .

IF LEN (TRIM (CITY)) <> 0

* If no da ta in CITY f i e ld the routine
* has been abo r t ed . However, i f data ex i s t s ,
* add new record to da tabase and enter info
* from the memory va r i ab l e s .

* NOTE: This code to return the
* M->SSNO memvar to i t s or ig ina l
* information wi l l only work in FoxPro .
* KEYBOARD must be used in FoxBASE+

STORE pat ient ->ssno TO M->ssno
RETURN . F.

ELSE
RETURN . T.

ENDIF found ()
ELSE

APPEND BLANK
GATHER MEMVAR && <— FoxPro command

* GATHER MEMVAR i s a FoxPro command.
* If us ing FoxBASE+ a REPLACE must be done .

ENDIF len (t r im (c i ty)) <> 0
RETURN
* END Procedure Padd

* SS ♦ has not been changed so
* return a logical . T.

PROCEDURE Dupcheck

*$ Check PATIENT. DBF f i le for duplicate
* Soc ia l Security number. Th is rout ine i s
* used by APPEND and EDIT rou t ines .
*
* The pas sed parameters a r e :
* x s sno - Soc ia l Secur i ty number
* xaction - Either ADDING or EDITING wi l l
* be pas sed to determine act ion
* * *
*
PARAMETERS xs sno , xact ion
CLEAR TYPEAHEAD

RETURN . T.
ENDIF M->ssno # pat ient ->ssno

ENDIF xact ion
* END Procedure Dupcheck

PROCEDURE Dupfindl

*$ Pop up warning box to t e l l u se r
* SS ♦ a l ready ex i s t s

*
PRIVATE savescrn

(continues)

October 1989Page 14

Patients — just like other people — move from time to
time and might not be seen for months or years between
visits. Therefore, a deduping process that utilizes the
address may not always catch duplicate records. The same
situation applies for the IDBUG Membership System and
the Consultants SIG Membership System, but with yet one
more consideration — inactive membership files must be
searched as well as active membership files. Another
problem is that these systems may very well have three
patients with the same name or several members with the
same name. About the only alternative this leaves is to
search by the name of the individual, and let the user
compare any matches to determine, based upon additional
information, whether the matching record is the same
person or not.

Searching by last name and first name often becomes
useless, since a user may input a first name as Robert one
time and Bob another time — and may yet come up with
other variations on this theme. Searching by last name
creates other problems, not the least of which is the
constant misspelling of last names. What we really need
here is a good phonetic fuzzy search technology that can
adequately deal with misspellings of names (SOUNDEX()
is simply not up to the task). Proximity Technology offers
a Developer’s Version of their Friendly Finder that can be
used for this purpose, but it is relatively slow, very
expensive, requires royalty payments, and has a counter
type of copy protection. Therefore, I have foregone the use
of Proximity’s product except in one instance where the
client’s need left no alternative. I’ve been advising Koren-
thal Associates in Manhattan (the creators of the excellent
4PRINT utility to print multiple pages on one sheet with a
laser printer) on their development of a fuzzy search
technology currently code named PhDbase, and hope this
will be on the market soon. But until PhDbase arrives, I’ll
have to continue to use the routines I’ve developed over
the years to contend with these problems.

The logic I use is applicable primarily in searching and
duplication avoidance where a person’s name is the key.
It is effective in systems where the database will remain
relatively small — under 5,000 or 6,000 records. Otherwise,
it’s necessary to resort to the SIMILAR() UDF discussed in
this publication some months ago. For the small database
situations mentioned, the primary search utilizes a SEEK
based upon the first three or four letters of the last name
input by the user. If a match is found, the user is informed
via a pop-up box that contains the full name from the
record as well as address information. The user is asked if
this is the same person and, if not, the program iterates the
search and pop-up routine until all possible matches have
been exhausted. If the user indicates that a match is the
same person, the APPEND routine is aborted, of course.
Obviously, this approach is not suitable for very large
databases.

(continues)

SAVE SCREEN TO savescrn
SET COLOR TO GR+/R
?? CHR(7)
8 7,47,16,63 BOX ”

* After screen has been saved
* paint message box

SET COLOR TO W+/R

8 8,48 CLEAR TO 15,62
810.49 SAY "That Social"
811.49 SAY "Security ♦"
812.49 SAY "is already in"
813.49 SAY "the database."
815.49 SAY "Press any key"
SET COLOR TO *+GR*/R
8 8,53 CLEAR TO 8,59
8 8,53 SAY "SORRY!"
WAIT ""
RESTORE SCREEN FROM savescrn
RETURN
* End Procedure Dupfindl

PROCEDURE Dupfind2

*& Advise user s/he has changed the SS ♦
* to one that already exists in the database
* * * * * * *
*

PRIVATE savescrn
SAVE SCREEN TO savescrn
SET COLOR TO GR+*/R

8 8,40,21,62 BOX '‘■"■■“-■I "
SET COLOR TO W+/R

* After screen has been saved,
* paint message box

8 9,41 CLEAR TO 20,61
811.42 SAY "A record already"
812.42 SAY "exists with the new"
813.42 SAY "SS ♦ you entered."
814.42 SAY "Duplicate are not"
815.42 SAY "permitted."
817.42 SAY "The original SS ♦"
818.42 SAY "will be restored."
820.42 SAY "Press any key..."
SET COLOR TO GR+*/R
8 9,49 CLEAR TO 9,54
8 9,49 SAY "SORRY!"
WAIT ""
RESTORE SCREEN FROM savescrn
RETURN
* END Procedure Dupfind2

The above routine is fairly simplistic and relies on the
presence of a unique identifier for the duplication avoid-
ance check. However, life is not often so simple. All too
frequently there will be no unique identifier. An example
might be a variation on our PATIENT database where a
Social Security Number is not used and the system assigns
a patient ID number at the time the new patient record is
entered; other examples are the systems I designed for the
International Dbase Users Group membership and the
NYPC Consultants SIG membership. All three of these
systems contain addresses and, at first light, it might be
thought the addresses could be used as part of a duplication
avoidance check. However, once again reality rears its ugly
head.

October 1989 Page 15

SET COLOR TO +BR/BG
0 00 ,27 ,02 ,52 BOX"nl J -H"
SET COLOR TO +W/BG
0 01 ,28 ,01 ,51 BOX " "
0 01 ,29 SAY "ADD A NEW IDBUG MEMBER"
SET COLOR TO W/N
0 14 ,21 SAY " (F i r s t) (Las t) "
SET COLOR TO +GR/N, +W/BR
?? SYS (2002 ,1)
0 13 ,17 GET mfi rs t
0 13 ,35 GET mmi PICTURE "0AJ"
0 13 ,38 GET mlas t

IF READKEYO - 12 .OR. READKEY () - 286
RETURN TO MASTER

ENDIF readkey () - 12 , e t c .

SAVE SCREEN TO savescrn
?? SYS (2002)

* 1 Procedure : MADD
* 1

* 1 Cal l ed by : MMENU (procedure in IDBUG. PRG)
* 1

* 1 Cal l s : SAME (procedure in IDBUG. PRG)
* 1 : ZIPCHECK (procedure in IDBUG. PRG)
★ 1

* 1 Uses : ACTIVE. DBF Al i a s : AC
* 1 : INACTIVE. DBF Al i a s : IN
* 1 : ZIPDATA. DBF Al i a s : ZIP
* 1 : TEMP. DBF
* 1

* 1 Indexes : ANAME. IDX
* 1 : A_IDNO.IDX
* 1 : AZIP . IDX
* 1 ; I _ IDNO. IDX
* 1 : Z IP . IDX
* 1

* ! Memory F i l e s : MEMIDNO.MEM *$ Use r va l ida t ion of input

SET COLOR TO +B/B
0 10 ,05 ,16 ,38 BOX ”
SET COLOR TO +W/B
0 11 ,06 ,15 ,37 BOX " "
0 11 ,07 SAY "You en t e r ed : "
qquery - I IF (mmi - " " , TRIM(mf i r s t) + " " +;

TRIM(mlas t) , TRIM(mf i r s t) + " " +;
mmi + " . " + TRIM(mlas t))

0 13 ,07 SAY qquery
SET COLOR TO *+W/B
0 15 ,07 SAY " IS THIS CORRECT? (Y/N) "
wwait - INKEY (0)

DO WHILE .NOT. CHR (wwa i t) $ "YyNn"

PROCEDURE madd

*& Add new IDBUG member
*

* Routine includes a duplicate avoidance
* search keyed by the l a s t name.
*

* Writ ten by : Pa t Adams

SET ESCAPE ON
ON ESCAPE RETURN TO MASTER
SET DELETED OFF
SET SAFETY OFF
SET BELL Off
SET CONFIRM ON
SET TALK Off
PUBLIC mf i r s t , mmi, m la s t , same, match
PRIVATE okay, more , last_no, good , savesc rn , wwait
STORE '• " TO same, okay
SET FUNCTION 7 TO CHR (29)
SET FUNCTION 8 TO CHR (21)
SET FUNCTION 9 TO CHR(23)
STORE " " TO okay, more

* Er ro r trapping to ensure Y or N response

IF wwait - 27
RETURN TO MASTER

ELSE
wwait - INKEY (0)

ENDIF wwait - 27
ENDDO while . no t . chr (wwai t) $

okay - UPPER (CHR (wwai t))

IF okay - "N"

*$ Loop to permit re-entry of
* member name i f e r ro r made*$ Open da t abases for use

SELECT 1
USE ACTIVE INDEX aname, a_idno, az ip ALIAS ac
SELECT 2
USE inact ive INDEX i_idno ALIAS in
SELECT 3
USE z ipdata INDEX z ip ALIAS z ip

DO WHILE UPPER (more) ♦ "N"

LOOP
ELSE

RESTORE SCREEN FROM savesc rn
ENDIF okey - "N"

ENDDO whi le upper (okay) # "Y"

SET COLOR TO +GR/N
0 22 ,16 SAY " " + CHR (16) + " " + CHR (16) +;

" " + CHR (16) + " SEARCHING FOR POSSIBLE DUPLICATE " +;
CHR(17) + " " + CHR(17) + " " + CHR(17)*$ Continue adding new members

* unti l u se r indica tes o therwise
*$ F i r s t s ea rch ACTIVE da tabase for pos s ib l e duplicate

DO WHILE UPPER (okay) ♦ "Y"
SELECT ac
GO TOP
match - UPPER (mlas t)
SEEK match

IF FOUND ()

*$ Get u se r input for new member name

SET COLOR TO W/N
CLEAR
0 0 ,1 SAY "ESC to"
0 1 ,1 SAY "re turn to"
0 2 ,1 SAY "Main Menu"
STORE SPACE (16) TO mf i r s t
STORE SPACE (1) TO mmi
STORE SPACE (24) TO mlas t
SET COLOR TO +BG/N
0 10 ,20 SAY "PLEASE ENTER THE NAME OF THE NEW MEMBER"
0 13 ,36 SAY " . "

*$ I f pos s ib l e duplicate found
* in ACTIVE da t abase , inform use r

DO same
ENDIF found ()

(continues)

October 1989Page 16

g 03,06,10,47 BOX "
g 03,08 SAY "The following record exists *
g 6,8 SAY TRIM(first) + " " + TRIM(LAST)

IF hstreetl ♦ SPACE(35)

IF UPPER(same) ♦ "Y"

*$ If no duplicate found in ACTIVE
* database, search INACTIVE

SELECT in
GO TOP
SEEK match

IF FOUND()

* Display partial info on home
* address if it is in record

g 07,08 SAY TRIM(hstreetl)
g 08,08 SAY TRIM(hcity) + ", " + hstate +;

TRANSFORM(hzip, "gR 99999-9999")
ELSE

e 7,8 SAY TRIM(ostreetl)
g 8,8 SAY TRIM(ocity) + ", " + ostate + ;

TRANSFORM(ozip, "gR 99999-9999")
ENDIF hstreet # space(35)

SET COLOR TO *+W/B
g 10,08 SAY "IS THIS THE SAME PERSON? (y/n)"
wwait - INKEY(0)

DO WHILE .NOT. CHR(wwait) $ "YyNn"

*$ If possible duplicate found
* in INACTIVE database, inform user

STORE " •’ TO same
SAVE SCREEN TO savescrn

DO WHILE UPPER(in->last) - match
DO same

IF UPPER(same) - "Y"

*$ Move inactive record to ACTIVE database

* Error trapping to ensure Y or N responseSET COLOR TO *+B/W
g 05,37,10,68 BOX "
SET COLOR TO B/W
g 06,38,09,67 BOX " "
g 06,42 SAY "MOVING RECORD TO ACTIVE"
g 07,44 SAY "MEMBERSHIP DATABASE"
g 09,39 SAY "Sorry to keep you waiting..."
COPY TO temp
DELETE
PACK
SELECT ac
APPEND FROM temp

wwait - INKEY()

IF wwait - 27
RETURN TO MASTER

ENDIF wwait - 27
ENDDO while .not. chr, etc.

same - UPPER(CHR(wwait))

IF same - "N"
SKIP

ELSE
EXIT

ENDIF same - "N"
ENDDO

RETURN
* END Procedure SAME

As you can see, there is no one method of deduping
that is right for all situations or all systems. It is necessary
to analyze each system and each database in the system to
ascertain what fields are key to avoidance record duplica-
tion. Once that determination has been made, it’s possible
to design the dedupe routine(s). As shown in the above
example, it may not always be possible for the computer
to deal with things effectively without additional analysis
and input from the user. Where data input is achieved via
electronic transfer from tape, telecommunications, or
mainframe transfer, entirely different methodologies will
be required. The important principle is to prevent dupli-
cate records from entering the system.

About the Author:

Pat Adams is an independent consultant, headquar-
tered in Brooklyn, New York. She is the author of two books
on dBASEIIIand dBASEIII+, and numerous articles on the
family of dbase languages. She is also founding treasurer
of the International dBASE Users Group, and founder and
chair of the NYPC Consultants SIG. — —

*$ Present record for user editing

** NOTE: Code for editing goes here
EXIT

ELSE
SKIP

ENDIF upper(same), etc.
ENDDO while upper(in->, etc.

ENDIF found()

** Code to APPEND the record follows here

Procedure: SAME

(procedure in IDBUG.PRG)Called by: MADD

PROCEDURE same

The SAME procedure is called when a
possible matching record is found in
in the ACTIVE or INACTIVE databases.

Assumes a PUBLIC memvar named SAME has
been declared at the calling level.

*& Show data on possible matching record

PRIVATE savescrn, wwait
SET ESCAPE ON
ON ESCAPE RETURN TO MASTER
STORE " " TO same
SAVE SCREEN TO savescrn

DO WHILE UPPER(LEFT(LAST,4) - LEFT(match,4)
SET COLOR TO +B/B
g 02,05,11,48 BOX "■“■■"-“I "
SET COLOR TO +W/B

Page 17October 1989

I * V A I w d I r\

A RECAP OF THE FOX DEVELOPERS CONFERENCE

By Glenn A. Hart

The Fox Developers Conference is history. This rather
cliched phrase isn’t, for once, hyperbole. For there really
was history made at the Conference — on several levels.

There were two stars of the show. FoxPro literally blew
away the audience at the jam-packed opening session. Dr.
David Fulton’s FoxPro demonstration was interrupted
constantly by appreciative clapping, cheering, and whis-
tling. The gathering of developers, corporate MIS execu-
tives, reporters, and users reached a fever pitch by the end
of the two-hour, in-depth demo. Feature after feature
elicited oohs and aahs, as the assemblage began to grasp
the incredible power which would soon be available to
them.

The other star was Dr. Dave himself. While he attends
some trade shows and an occasional user group meeting,
for the most part Dave stays anchored in bucolic Per-
rysburg, which is hardly a thriving media center. Recent
publicity in leading database journals has widened his ex-
posure, but this was the first opportunity for many to see
the Fox guru in action. Dave projects a quiet brilliance and
obvious intellect, but his gentle and dry wit may have been
something of a surprise to some.

While the demo was intended as a continuous affair,
with several feedback sessions scheduled throughout the
Conference for questions and answers, several of the
attendees couldn’t restrain themselves. Questions pep-
pered the demo, and were handled pungently by Dr.
Fulton. Strangely enough, it was this aspect of the session
that most won over the developers. For example, a
member of the audience suggested an interesting and
clever approach to handling one facet of FoxPro debug-
ging. When Dave tried it, with excellent results, his whoop
of delight conveyed more than any planned demo could.
The developers and programmers instantly realized that
Dave is one of them. Not some cold corporate executive
motivated by bottom lines, head counts, stock prices, or
other irrelevances, but a userwho understands and shares
the ineffable pleasures of superior software.

Dr. Fulton also announced the pricing for FoxPro.
Single user FoxPro is priced at $795.00, with multi-user
FoxPro/LAN at $1,095.00. The FoxPro runtime is $500.00.
The runtime automatically configures itself to handle
single-user or multi-user applications, so there’s no longer
a separate version for each base package. Registered
FoxBASE+ and FoxBASE+/386 users can purchase FoxPro
for only $195.00, and FoxBASE+/LAN owners can buy
FoxPro/LAN for $250.00. These special prices were an-
nounced as effective through December 31, 1989.

The Conference readily answered the question of
whether anyone would come to Toledo, Ohio for any-

thing. Pinnacle Publishing, co-sponsor of the event (and
publisher of your favorite Fox-oriented publication), cut off
attendance at 650, and turned away another 250. Given the
early cutoff announcement, it’s likely that many, many
more would have attended if possible. Toledo proved a
pleasant surprise for many attendees. The Conference
hotels were lovely and professional, the convention facili-
ties were attractive and competently run, and the surround-
ing areas of downtown Toledo were pretty, clean, and safe.
If Toledo does close down a mite early for programmer
types with all-night work habits, no city can have every-
thing!

The Conference kicked off Tuesday night with a lavish
welcoming reception. Mounds of seafood and other de-
lectables proved conclusively that there is fine food avail-
able between New York and Chicago. Associating faces
with names and disembodied voices was the order of the
evening, as readers met writers, users met Fox tech support
and development folks, and denizens of the electronic
mailwaves on CompuServe and IDBUG met each other.

Following the Wednesday morning FoxPro rollout, at
lunch hour David Irwin gave an entertaining slide show
chronicling the triumphs and follies of the dbase commu-
nity since its inception nearly 10 years ago. David’s
engaging manner and the intrinsic humor of some of the
silly marketing ploys attempted over the years were most
amusing.

The intensive seminar schedule at the Conference
covered a wide gamut of FoxPro, FoxBASE+, and FoxBASE+/
Mac topics. Most attendees reported that their toughest
decision was which seminars to choose from the long list,
even though several were repeated more than once. The
FoxBASE luminaries conducting seminars included Pat
Adams, Luis Castro, Jim Davis of SBT, Bill French, George
Goley, Tom Gottheimer of SBT, Richard Grossman, John
Hawkins, Jon Henderson of 3D Graphics, Stephen
Hochschild of Novell, David Irwin, Walt Kennamer, Jordan
Powell, Tom Rettig, Randy Wallin, Jerry Whittaker (see,
writing for foxtalk can make you a star!), yours truly, and
others.

Later that day, a four-hour vendor trade show gave
attendees a chance to examine the wares of leading third-
party software vendors like SBT, Korenthal Associates,
Clear Software, Concentric Software, SCO, Wallsoft, and
others.

Wednesday evening, consultant/columnist Pat Adams
hosted an exclusive IDBUG party. Most of the speakers,
Dave and Amy Fulton, Dick LaValley, Fox Chairman
Richard Ney and other Foxies, as well as other leading
lights made a heavy dent in the headquarters hotel’s stock
of fine beverages (including The Glenlivet, perhaps the
best Scotch in the world, and a brand I helped introduce
into this country in the early seventies) until the wee hours.
A most pleasant end to a very long day!

(continues)

October 1989Page 18

FoxServer and various SQL options were also covered.
Dave drew interesting distinctions between performance
oriented servers, likening them to math coprocessors, and
connectivity oriented servers for retrieval of information
from locations remote from the local workstation. Fox
intends to support both server styles and a variety of
implementations.

After a spirited question and answer session, Dave
received a standing ovation and the Conference drew to a
close. Weary yet elated, everyone rushed home to put
FoxPro through its paces and enter the next generation of
database management.

The reports, reviewers, and columnists attending the
Conference will be sharing their thoughts with you in the
months to come. Even during the Conference, though, a
consensus seemed to be emerging, one with which I
concur.

The importance of the Conference transcends on two
scores the mere introduction of a new product. FoxPro ups
the ante for aU personal computer software, not just
database managers. New interface styles, new ease of
learning and ease of use, new functionality, seamless
integration — and all at unprecedented speeds. Other PC
software seems clumsy and sluggish. Over time, users will
increasingly demand FoxPro-like interface elegance and
execution speed.

Perhaps even more striking was the almost palpable
sense of a company crossing a threshold, somehow coming
of age before our eyes. Fox’s potential is nearly unlimited.
Several factors point toward mercuric growth. Fox’s prod-
ucts are technologically superior in nearly every way to its
competition. Ashton-Tate, its primary competitor, has
hideously flawed products, serious management weak-
nesses, and financial difficulties. And, not to be underes-
timated, Fox is staffed with committed and nice people
who love what they do and what they create.

Fox faces serious challenges ahead. They must con-
solidate and expand their technological leadership, enter
new marketplaces — with many technical and marketing
pitfalls to avoid, expand their organization greatly — with
all the administrative responsibilities this entails, while at
the same time retaining the special personal and corporate
style that makes them so special. I, and the other analysts
at the Conference, have little doubt that Fox can accom-
plish all these objectives. We all left the Conference with
reinforced confirmation of the wisdom of our decision to
commit to Fox products.

The Fox Developers Conference was both an end and
a beginning. It marked the culmination of two years work
on FoxPro. At the same time, it represented the beginning
of a new phase for Fox Software. It was a remarkable event.
I hope I’ve been able to give you a feel for what happened,
but I know this is but a pale shadow of the reality of this
powerful experience. Don’t miss the next one. ____

Thursday was devoted primarily to seminars. The
highlight of the day was a luncheon speech by the father
of the dbase community, Wayne Ratliff. Wayne shared
some humorous stories on the origination and early
marketing of dBASE II. This was the first time many had
seen and met the man to whom we all owe so much, and
Wayne’s quiet charm was most ingratiating.

Thursday evening Fox and Pinnacle hosted an elegant
cocktail party at the Toledo Museum of Art. The Museum
is widely regarded as one of the best in the country, and
provided a cosmopolitan backdrop for the festivities. A
special exhibition was displayed for the Conference, and a
sophisticated jazz trio generated suitably refined aural
accompaniment.

Friday morning, Fox opened the gates for everyone to
pick up their copy of FoxPro (or FoxBASE+/Mac if they
preferred). With over 600 advanced power users receiving
copies of FoxPro, Fox decided to delay the commercial
release of FoxPro to provide the group with time to use the
program exhaustively and report any remaining problems.
This wise decision should result in an even more solid
program when FoxPro hits the shelves sometime in early
October. The multi-user FoxPro/LAN should follow about
a month later.

Throughout the Conference, computer rooms stocked
with PCs and Macs were available to all attendees to
experiment with FoxPro and FoxBASE+/Mac, share code
and otherwise assuage their computer withdrawal symp-
toms. Fox gathered all comments and problem reports,
and Dave Fulton got a cheer on Friday when he announced
that all problems reported by eight PM the previous
evening had already been fixed. No wonder many of the
Fox programmers weren’t much in evidence during parts
of the Conference!

The Conference closed with Dick LaValley updating
the group on the status of the litigation between Fox
Software and Ashton-Tate. At present, the discovery proc-
ess, where both sides gather information, continues. The
suit is not likely to come to trial, if it ever does, until late
1990 or early 1991. The legal actions, while somewhat
costly, are having essentially no impact on Fox’s ongoing
business, other than the publicity bonanza the suit be-
stowed on Fox.

Dr. Fulton then discussed the future directions Fox
intends to explore. Dave explained that Fox no longer
conceptualizes a distinction between PC and Mac products.
Rather, Fox categorizes its products as graphics mode
products and character mode products. Next on the Fox
agenda is synchronizing these two environments. Fox can
then consider porting both types of software to other
platforms. Among the possibilities: character mode OS/2
on the upcoming ‘386 version, graphics mode Presentation
Manager, character mode Unix/Xenix, the various graphics
interfaces operating over Unix, minicomputers, etc.

October 1989 Page 19

Faster Search Program Wild Card Search

The program also monitors the length of the input variable
and does the search off of it. For instance, if you were to
enter an “S” in the first field, all records with that field be-
ginning with an “S” will be listed.

Of course, if there is no match available, the program
notifies you of this and allows you to modify your entry.

What follows is a program that my department uses. It
has cut our search time for a record from what was up to
several minutes, down to few seconds.

By Herman Rohr

“If only we had a list of all the criminals in Gotham City who
have red hair, were age 40-45, have a height 6’ 5,” wore
clown outfits, and drove a 20’ long car that was shaped like
a banana,” Alfred says to Batman.

A worried looking Batman suddenly exclaims, “I
know, let’s check the Bat Computer.” (Like he forgot he
had this computer that occupied three-fourths of the Bat
Cave.)

After inputing all the search criteria into the computer,
seconds later, sure enough — the culprit was identified.
Now THAT was a fast search mode.

Many of us might have somewhat similar needs in a
search program. The problem occurs when combining all
of those variables together. Depending on the size of your
database, this process could take several minutes.

I discovered a way to find all clown-dressed drivers of
banana cars almost instantly. The trick is to have a separate
index on each of the input fields of search criteria.

General Layout

Step 1 Collect search criteria.

Step 2 Use your database and index off of the first used
field in the search criteria.

Step 3 Create a macro that can change with the amount
of fields that are used in the search criteria.

Result Data output spews forth from printer! (You may
need a rag if the spewing gets out of hand.)

Spock Speed

There is also a lot of logic involved in this process. So put
on your Spock ears and let’s delve into the what’s what.

Speed in processing your search with this program
comes from knowing which fields to use and which not to
use.

After determining which fields to use, set a logical
variable to indicate that field is being used. Then it just
becomes a matter of listing all the possible combinations of
the fields to adjust the macro.

So instead of having the computer try to LOCATE for
a combination of fields, you actually do a FIND on the first
used field ,and then use the macro you’ve set up to search
for the remaining criteria.

Program: SEARCH.PRG

Author: HERMAN ROHR

copyright (c) 1989, HERMAN ROHR

Last modified: 08/29/89 12:13

Uses: BIOMSTR.DBF

Indexes: DESCMSTR.NDX

: BIOMFG.NDX

: BIOMDL.NDX

: DEPTMSTR.NDX

Documented: 08/29/89 at 12:14 FoxDoc version 1.0

C:\FB\BIOMSTR.DBFStructure for database:

*: Number of data records: 9689

Date <□f last update : 09/22/89
Field Field Name Type Width Dec

1 ID Character 6

2 MFG Character 20

3 SN Character 10

4 DESCR Character 25

5 MODEL Character 20

6 CTR Character 4

7 PM_NO Character 3

8 LAST_PM Date 8

9 STATUS Character 1
10 LAST_SFTY Date 8

** Total ** 106

*: Select area: 1, Database in Use: C:\FB\BIOMSTR.DBF
*: Master index file: C:\FB\DESCMSTR.IDX Key: DESCR+ID

*: Index file: C:\FB\DEPTMSTR.IDX Key: CTR+ID
*: Index file: C:\FB\BIOMDL.IDX Key: MODEL+ID
*: Index file: C:\FB\BIOMFG.IDX Key: MFG+ID

SET TALK OFF

SET ESCAPE ON

SET ECHO OFF

SET EXACT OFF

CLEAR

*$ Initialize memory variables

STORE SPACE(25) TO tdesc

STORE SPACE(4) TO tetr

STORE SPACE(20) TO tpm

STORE SPACE(20) TO tmfg,tmdl

STORE 0 TO af,bf,cf,df,so

STORE 1 TO X,S,y,Z

STORE .F. TO a,b,c,d

(continues)

October 1989Page 20

STORE RECNOO TO cf
IF .NOT. EOF()

STORE .T. TO c
ENDIF

ENDIF

IF tetr > " "
tetr - TRIM(LTRIM(tetr))
SET ORDER TO 4
FIND 4tctr
IF EOF()

0 19,4 SAY "NO MATCH ON COST CENTER"
WAIT
0 16,0 TO 20,60 CLEAR
STORE SPACE(4) TO tetr
LOOP

ENDIF
STORE RECNOO TO df
IF .NOT. EOF()

STORE .T. TO d
ENDIF

ENDIF

DO WHILE .T.

*$ Set up screen and do GETS

0 4,4 SAY "INPUT SEARCH CRITERIA
0 8,4 SAY "DESCRIPTION " GET tdesc
0 10,4 SAY "MANUFACTURER " GET tmfg
0 12,4 SAY "MODEL NUMBER " GET tmdl
0 14,4 SAY "COST CENTER " GET tetr ;

PICTURE "9999"

READ

*$ If no entry, safely returns to
* prior program

IF tdesc - " " .AND. tmfg - " " .AND. tmdl - " " .AND. ;
tetr - " «
RETURN

ENDIF
*$ After determining which fields are to
* be used in the search, the logic state-
* ments of a,b,c 4 d will help set up
* a macro used in the search mode.

*$ USE database, set up indexes

USE biomstr
SET INDEX TO desemstr, biomfg, biomdl, deptmstr IF a .AND. b .AND. c .AND. d

Uto - "DESCR - TDESC .AND. MFG - TMFG .AND. "
"MODEL - TMDL .AND. CTR - TCTR"

ENDIF

IF b .AND. c .AND. d .AND. .NOT. a
Uto - "MFG - TMFG .AND. MODEL - TMDL .AND. "

"CTR - TCTR"
ENDIF

IF c .AND. d .AND. .NOT. a .AND. .NOT. b
Uto - "CTR - TCTR .AND. MODEL - TMDL"

ENDIF

IF d .AND .NOT. a .AND. .NOT. b .AND. .NOT. c
Uto - "CTR - TCTR"

ENDIF

IF a .AND. b .AND. c .AND. .NOT. d
Uto - "DESCR - TDESC .AND. MFG - TMFG .AND. "

"MODEL - TMDL"
ENDIF

IF b .AND. c .AND. .NOT. a .AND. .NOT. d
Uto - "MFG - TMFG .AND. MODEL - TMDL"

ENDIF

IF C .AND. .NOT. a .AND. .NOT. b .AND. .NOT. d
Uto - "MODEL - TMDL"

ENDIF

IF a .AND. b .AND. .NOT. C .AND. .NOT. d
Uto - "DESCR - TDESC .AND. MFG - TMFG"

ENDIF

IF b .AND. .NOT. a .AND. .NOT. c .AND .NOT. d
Uto - "MFG - TMFG"

ENDIF

IF a .AND. .NOT. b .AND. .NOT. c .AND. .NOT. d
Uto - "DESCR - TDESC"

ENDIF

IF a .AND. C .AND. d .AND. .NOT. b
Uto - "DESCR - TDESC .AND. PM_NO - TPM .AND. "

"CTR - TCTR"
ENDIF

IF a .AND. d .AND. .NOT. b .AND. .NOT. C

UtO - "DESCR - TDESC .AND. CTR - TCTR"
ENDIF

IF a .AND. b .AND. d .AND. .NOT. C
uto - "DESCR - TDESC .AND. MFG - TMFG .AND. "

"CTR - TCTR"
ENDIF

*$ Looks for blank entries or mismatches.
* Loops back if no match. Stores recno()
* to z if there is a match.

IF tdesc > " "
tdesc - TRIM(LTRIM(tdesc))
SET ORDER TO 1
FIND 4tdesc
IF EOF()

0 16,4 SAY "NO MATCH ON DESCRIPTION"
WAIT
0 16,0 TO 20,50 CLEAR
STORE SPACE(25) TO tdesc
LOOP

ENDIF
STORE RECNO() TO af
IF .NOT. EOF()

STORE .T. TO a
ENDIF

ENDIF

IF tmfg > " "
tmfg - TRIM(LTRIM(tmfg))
SET ORDER TO 2
FIND 4tmfg
IF EOF()

0 17,4 SAY "NO MATCH ON MANUFACTURER"
WAIT
0 16,0 TO 20,60 CLEAR
STORE SPACE(20) TO tmfg
LOOP

ENDIF
STORE RECNO() TO bf
IF .NOT. EOF()

STORE .T. TO b
ENDIF

ENDIF

IF tmdl > " "
tmdl - TRIM(LTRIM(tmdl))
SET ORDER TO 3
FIND 4tmdl
IF EOF()

0 18,4 SAY "NO MATCH ON MODEL"
WAIT
0 16,0 TO 20,60 CLEAR
STORE SPACE(20) TO tmdl
LOOP

ENDIF

(continues)

October 1989 Page 21

IF b .AND. d .AND. .NOT. a .AND. .NOT. C
Uto - "MFG - TMFG .AND. CTR - TCTR"

END IF

IF a .AND. C .AND. .NOT. b .AND. .NOT. d
Uto - "DESCR - TDESC .AND. MODEL - TMDL"

END IF

IF &uto
0 s , 1 SAY id
0 s , 8 SAY mfg
0 s , 30 SAY model
0 s , 52 SAY sn
0 s , 64 SAY desc r
0 s , 90 SAY pm_no
0 s , 98 SAY las t_sf ty
0 s , 108 SAY last_pm
0 s ,118 SAY STATUS
0 s , 127 SAY ctr
X - X + 1
s — s + 1
SKIP

*$ End of page counter . s i s the l ine
* counter and y i s the page number.

*$ Looks for f i r s t da ta entry that i s
* not b lank and then wi l l SET ORDER
* to that a s soc i a t ed INDEX. Also s e t s
* up a macro used in the DO WHILE

IF a
z “ a f
so - 1
SOS - "DESCR - TDESC"

ENDIF IF s >- 57
y - y + 1
s - 1
EJECT
EXIT

ENDIF
LOOP

ELSE
SKIP
LOOP

END IF
EXIT

ENDDO

ENDDO
SET DEVICE TO SCREEN
EJECT

IF b .AND. .NOT. a
so - 2
z - bf
SOS - "MFG - TMFG"

END IF

IF c .AND. .NOT. a .AND. .NOT. b
so - 3
z - c f
SOS - "MODEL - TMDL"

ENDIF

IF d .AND. .NOT. a .AND. .NOT. b .AND. .NOT. c
so - 4
z - df
sos - "CTR - TCTR"

ENDIF EXIT
ENDDO

RETURN
*: EOF: SEARCH. PRG

*$ After determining which i s the f i r s t
* avai lable data entry that i s not blank,
* SET ORDER TO i s se t t o the correct
* pos i t i on . Pr in te r i s a l so turned on .

About the Author:
SET ORDER TO so
GOTO z
SET DEVICE TO PRINT

DO WHILE &SOS

Herman Rohr is a FoxBASE+/dBASE programmer in
the Topeka, Kansas, area who writes small business appli-
cations. He is employed as Supervisor of Clinical Engineer-
ing at St.Francis Hospital in Topeka.

*$ Header i s pr inted for your ins t i tu t ion
* for each page .

0 s , 57 SAY "YOUR INSTITUTION'S NAME"
s = s + 1
0 s , 60 SAY "SELECTED INVENTORY"
0 s , 1 SAY "DATE " + DTOC(DATEO)
0 s , 122 SAY "PAGE " + STR (y, 3 ,0)

s - s +2
0 S ,1 SAY " ID"
0 s , 8 SAY "MANUFACTURER"
0 S ,30 SAY "MODEL"
0 s , 52 SAY "SERIAL NO."
0 S, 64 SAY "DESCRIPTION"
0 s , 90 SAY "PM CODE"
0 S, 98 SAY "EST DATE"
0 s , 108 SAY "PM DATE"
0 S ,118 SAY "STATUS"
0 S, 127 SAY "CTR"
s - s + 2

EDITORIAL CONT ____________________________________

submissions on all aspects of FoxBASE+, FoxBASE+/Mac
and, now, FoxPro. Check the author’s guidelines which
appear in most issues and share your best work with the
Fox community. You’ll make some money (and maybe
more than some; several contributors report obtaining
consulting assignments resulting from their foxtalk ar-
ticles) and gain a modicum of recognition (notoriety?). I
look forward to seeing your submissions.

DO WHILE 4SOS

*$ Here ' s where the work i s done . As long
* a s there i s a match on the current
* INDEX, the program wi l l compare each
* record looking for matches in the
* add i t iona l f i e ld s . I f a match i s
* found, i t i s pr inted ou t .

Glenn A. Hart

Page 22 October 1989

THREE SCREENS PROCEDURES CONT
g ROW+3,RIGHT+1 SAY CHR(219)
g ROW+2,RIGHT+1 SAY CHR(219)
g ROW+1,RIGHT+1 SAY CHR(219)
g ROW,RIGHT+1 SAY CHR(219)
g ROW-1,RIGHT+1 SAY CHR(220)

ENDIF
ELSE

IF endline - 2
g ROW-1,LEFT CLEAR TO ROW+endline+1,RIGHT
g ROW-1,LEFT TO ROW+endline+1,RIGHT DOUBLE
*** SHADOW ***
SET COLOR TO 4sh_col
g ROW+4,LEFT+1 SAY REPLICATE(CHR(223),76)
g ROW+3,RIGHT+1 SAY CHR(219)
g ROW+2,RIGHT+1 SAY CHR(219)
g ROW+1,RIGHT+1 SAY CHR(219)
g ROW,RIGHT+1 SAY CHR(219)
g ROW-1,RIGHT+1 SAY CHR(220)

ELSE
g ROW-1,LEFT CLEAR TO ROW+endline+2,RIGHT
g ROW-1,LEFT TO ROW+endline+2,RIGHT DOUBLE
*** SHADOW ***
SET COLOR TO 4sh_col
g ROW+5,LEFT+1 SAY REPLICATE(CHR(223),76)
g ROW+4,RIGHT+1 SAY CHR(219)
g ROW+3,RIGHT+1 SAY CHR(219)
g ROW+2,RIGHT+1 SAY CHR(219)
g ROW+1,RIGHT+1 SAY CHR(219)
g ROW,RIGHT+1 SAY CHR(219)
g ROW-1,RIGHT+1 SAY CHR(220)

ENDIF
ENDIF
SET COLOR TO 4tx_color,4hi_color
g ROW,(80-LEN(ml))/2 SAY ml
g ROW+1,(80-LEN(m2))/2 SAY m2
IF endline-3

g ROW+2,(80-LEN(m3))/2 SAY m3
ENDIF
IF 4getflag

STORE " " TO yn
IF endline-2

g ROW+2,31 SAY "Choice (Y/N)? " GET yn;
PICTURE "J" VALID yn$"YN"

READ
SET COLOR TO 4old_col
RESTORE SCREEN
RETURN

ELSE
g ROW+3,31 SAY "Choice (Y/N)? " GET yn;

PICTURE "J" VALID yn$"YN"
READ
SET COLOR TO 4old_col
RESTORE SCREEN
RETURN

ENDIF
ELSE

XX- INKEY(2)
ENDIF

ENDCASE
ELSE

no_rows—1
ml-LTRIM(TRIM(msg))
STORE LEN(ml) TO l_msg
STORE (80-LEN(ml))/2 TO start
SET COLOR TO 4fr_color
IF .NOT. igetflag

g ROW-1,start-2 CLEAR TO ROW+1,start+l+l_msg
g ROW-1,start-2 TO ROW+1,start+l+l_msg DOUBLE
*** SHADOW ***
SET COLOR TO 4sh_col
g ROW+2,start-1 SAY REPLICATE(CHR(223),l_msg+4)
g ROW+1,start+2+l_msg SAY CHR(219)
g ROW,start+2+l_msg SAY CHR(219)
g ROW-1,start+2+l_msg SAY CHR(220)

ELSE
IF l_msg>21

g ROW-1,start-2 CLEAR TO ROW+2,start+l+l_msg
g ROW-1,start-2 TO ROW+2,start+l+l_msg DOUBLE
*** SHADOW ***

SET COLOR TO 4sh_col
g ROW+3,start-1 SAY REPLICATE(CHR(223),l_msg+4)
g ROW+2,start+2+l_msg SAY CHR(219)
g ROW+1,start+2+l_msg SAY CHR(219)
g ROW,start+2+l_msg SAY CHR(219)
g ROW-1,start+2+l_msg SAY CHR(220)

ELSE
g ROW-1,29 CLEAR TO ROW+2,50
g ROW-1,29 TO ROW+2,50 DOUBLE
*** SHADOW ***
SET COLOR TO 4sh_col
g ROW+3,30 SAY REPLICATE(CHR(223),22)
g ROW+2,51 SAY CHR(219)
g ROW+1,51 SAY CHR(219)
g ROW,51 SAY CHR(219)
g ROW-1,51 SAY CHR(220)

ENDIF
ENDIF
SET COLOR TO 4tx_color,4hi_color
g ROW,start SAY ml
IF 4getflag

STORE " " TO yn
g ROW+1,31 SAY "Choice (Y/N)? " GET yn;

PICTURE "!" VALID yn$"YN"
READ
SET COLOR TO 4old_col
RESTORE SCREEN
RETURN

ELSE
xx- INKEY(2) 44 display message for 2 seconds

ENDIF 44 change to xx-inkey(O) to wait
ENDIF 44 for use keystroke
SET COLOR TO 4old_col 44 restore PRIOR colors
RESTORE SCREEN
RETURN

Frame2

‘FRAME2’ is similar to ‘FRAME,’ however, it is shorter
and simpler and displays a centered, framed, and shad-
owed message box of one line only... up to 74 characters.
The shadow is the more common WIDE shadow, CHR(219),
and the colors are fixed. Of course you will adjust the colors
to suit your own tastes.

‘DO frame2 with row(),”« You Must Enter a Value
is an ideal routine to be called from a validation UDF.

‘FRAME2’ can be called as a data entry prompt box, as
in:

STORE space(15) to m_last
DO frame2 with 10,"Enter Last Name • + ;

REPLICATE(chr(255),15)
g 10,col()-15 GET m_last PICTURE "gX!"
READ

or
STORE " " TO yn
DO frame2 WITH 22,"Edit Another Record? "+chr(255)
0 22,col()-l GET yn PICTURE "Y
READ

FRAME2

PARAMETERS line,msg
* Len Levy, Data Management Systems

*** LINE - Row on which message is to appear
*** MSG - Any message to be centered and framed up to 74
*** characters

*** Syntax Example:

*** DO frame2 WITH row(),"Hit Any Key to Continue"

(continues)

October 1989 Page 23

WRITER’S GUIDELINES:

The editorial staff of foxtalk encourages anyone who is
interested in writing for the journal to submit articles to us.
We realize that our readership will be better served by a
journal that presents a wide variety rtf' viewpoints,
expertise, and topics rather than just those which come
from our own FoxBASE+ experience.

If you would like to write for the journal, here are
some rules we must ask you to follow:

1. AH material, prose, and source code must be origi-
nal and must be owned by you.

2 You must inform us ifother publications are consid-
ering your article.

3. Pinnacle Publishing reserves all rights to all articles
published in foxtalk. Be aware that your articles,
and, particularly your code, may be used by readers
in the development and implementation of individ-
ual applications.

4. Articles may be submitted on a diskette (5 1/4,”360K
or 1.2M) or via modem The preferred format is
Microsoft Word. Also acceptable is straight ASCII
text

5. All text must be clean and unformatted, free of in-
dentations, tabs, control codes, and manual “eye-
bailing" alignmentoftextusingthespaoebar. Ifyou
need to emphasize key words, or extensivelyformat
a table or diagram, please enclose a separate print-
out of your article that shows the appropriate em-
phasis. You should include a proposed tide and a
brief biographical sketch which may appear at the
end of the artide.

6. Please make certain that no line of text exceeds 60
characters.

7. The editorial staff will decide what to publish and
when based on what we think is of most interest to
our readers, and on the quality of material submit-
ted. Our target audience is the serious, professional
FoxBASE+ user, so please write with that individual
in mind.

All materialsubmitted for publication will receive fair
and judidous treatment; however, we cannot guaran-
tee publication to anyone. Honoraria are paid after pub-
lication.

Will display center and framed message on the
current line

*** STORE " " TO yn
*** DO frame2 WITH 12,"Do You Wish To Quit?"+chr(255)
*** 0 12,col()-l GET yn PICTURE VALID yn$"YN"
*** READ
*** Will display centered and framed query on line 12

*** STORE space(15) TO Iname
*** DO frame2 WITH 8,"Enter Last Name
*** +REPLICATE(chr(255),15)
*** 0 8,col()-15 GET Iname PICTURE "0X!«
*** READ

Will display centered and framed query on line 8

PRIVATE msg_len,msg_start,msg_end,box_start,box_end
PRIVATE sha_start,sha_end,xx
old_col-SYS(2001,"COLOR")
msg_len - LEN(TRIM(msg))
IF msg_len>74 && Error trap

CLEAR
0 11,17 TO 13,62 double
0 12,19 SAY "Message Length Exceeds 74 Character Limit’"
XX-INKEY(2)
RETURN

ENDIF
IF line>22 && Error trap

CLEAR
0 11,12 TO 13,66 double
0 12,14 SAY "Starting Line is too low. "+;

"Message will be scrolled"
XX-INKEY(2)
RETURN

ENDIF
?? SYS(2002) && Cursor off
msg_start - (80-msg_len)/2
msg_end - msg_start+LEN(TRIM(msg))
box_start — msg_start-3
box_end — msg_end+2
sha_start - box_start+2
sha_end - box_end+2
SET COLOR TO n/n
0 line,sha_start CLEAR TO line+2,sha_end &£ Draw shadow
IF ISCOLORO

SET COLOR TO r/bg && Select your own box colors
ELSE

SET COLOR TO n/w+
ENDIF
0 line-1,box_start CLEAR TO line+l,box_end && Box outline
0 line-1,box_start TO line+1,box_end double
IF ISCOLORO

SET COLOR TO w+/bg && Select your own message colors
ENDIF
0 line,msg_start SAY msg it Print message in box
SET COLOR TO 4OLD_COL
?? SYS(2002,1) &£ Cursor on
RETURN

These procedures are certainly time savers, but just as
important, they add consistency to your applications.

About the Author:

Len Levy is a FoxBASE+ programmer, consultant,
teacher, and musician. He started as a teacher in the
Yonkers, N.Y. Public Schools System in 1961, initially
teaching music and later teaching computer courses in the
middle schools. Since 1986 he has worked continually as
Programmer and Network Administrator for Yonkers’ Spe-
cial Education Department. He began computing in 1977
when the Tandy Model I appeared and, since 1983, has
been addicted to dBASE. His private consulting business,
DATA MANAGEMENTSYSTEMS, is based in Scarsdale, N.Y.

October 1989Page 24

